• Title/Summary/Keyword: Asperity Contact

Search Result 69, Processing Time 0.024 seconds

Finite Element Analysis of Subsurface Crack Propagation in Half-space Due to Sliding Contact (유한요소법을 이용한 미끄럼 접촉시의 반무한체 내의 수평균열 전파해석)

  • 이상윤;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.297-302
    • /
    • 1999
  • Finite element analysis is peformed about the crack propagation in half-space due to sliding contact. The analysis is based on linear elastic fracture mechanics and stress intensity factor concept. The crack location is fixed and the friction coefficient between asperity and half-space is varied to analyze the effect of surface friction on stress Intensity factor for horizontal crack. The crack propagation direction is predicted based on the maximum range of shear and tensile stress intensity factor.

  • PDF

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

A Study on the Adhesive Characteristics of Nano Scale Particles Considering Asperity Interaction (거칠기 돌기의 상호작용을 고려한 미세입자의 응착특성에 관한 연구)

  • Lee, Chang-Hun;Lee, Kyong-Hun;Yoon, Jun-Ho;Shin, Young-Eui
    • Journal of Welding and Joining
    • /
    • v.26 no.1
    • /
    • pp.56-62
    • /
    • 2008
  • In this paper, elastic and plastic adhesion index was very important in deciding adhesive characteristics and varying elastic and plastic index, dimensionless load and pull-off force were analyzed and simulated. Finally, using AFM, experimental surface roughness parameters of substrates and pull-off force between tip and substrates were produced. Using these values, pull-off forces were calculated and were compared with experimental pull-off forces. Through simulation and experiment, it was found that interaction of asperity also had very important influence on adhesive contact.

APPLICATION OF FFT-BASED ANALYSIS TO CONTACT CONDITION PREDICTION FOR TRIBOLOGICAL SURFACE DESIGN

  • Sung, I.H.;Lee, H.S.;Kim, D.E.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.255-256
    • /
    • 2002
  • In this paper, the frictional behavior according to the contact geometry was investigated using a micro-tribotester built inside a Scanning Electron Microscope (SEM) and an Atomic Force Microscope (AFM). FFT (Fast Fourier Transform) analysis for friction was conducted as a method to interpret the contact condition. From the experimental results, it could be concluded that the relative dimensions and distribution of contact asperities on the surface could be predicted by the power spectrum and main frequency in the FFT analysis of the friction signal.

  • PDF

Computer Modeling of Hot Spot Phenomena in Ventilated Disk Brake Rubbing Surface

  • Kim, Chung-Kyun;Cho, Seung-Hyun;Ko, Young-Bae
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.229-230
    • /
    • 2002
  • This paper presents the hot spot behaviors on the rubbing surface of ventilated disk brake by using finite element method. The depth of asperities on the rubbing surface is usually $2-3\;{\mu}m$ so the real contact area is microscopically. Non-uniform contacts between the disk and the pads lead to high local temperatures, which may cause the material degradation, and develops hot spots, thermal cracking, and brake system failures at the end. High contact asperity flash temperatures in rubbing systems, which is strongly related to the hot spot. It was generally known that high temperature over about $700^{\circ}C$ may form martensite on the cast iron which is material for automotive disk brakes. In this paper, the contact stress, temperature distribution and strain have been presented for the specific asperities of real contact area microscopically by using coupled thermal-mechanical analysis technique.

  • PDF

Experimental investigation of TD characteristics of a flying head slider in the near-contact region (근 접촉 영역에서 부상중인 슬라이더의 Touch-Down특성의 실험적 해석)

  • Lee, Yong-Eun;Lee, Sang-Jik;Lim, Geon-Yup;Park, Kyoung-Su
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.65-69
    • /
    • 2011
  • Head Disk Interface (HDI) in a Hard Disk Drive (HDD) has decreased to achieve high areal density. Thus, the contact between a slider and a disk becomes more important. The contact between the slider and the disk can cause severe wear and damage of both the slider and the disk. Especially, Touch Down (TD) that the contact occurs continuously and repeatedly is extremely dangerous. Therefore, it is necessary to analyze the unstable bouncing vibration of the slider in head-disk interface. In this paper, we investigate the characteristic and causes of the Touch Down.

Calculation of the Contact Resistance by Contact Surface (접점표면의 형상에 따른 접촉저항 계산)

  • Oh Yeon-ho;song Ki-dong;Kim Chin-ki;Kim Kwi-sik
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1109-1111
    • /
    • 2004
  • This paper deals with the calculation of contact resistance depending on the applied force by modeling surface roughness. The true contact surface area is made up of many asperities of varying heights which is close to Gaussian distribution. The mean square deviation and the mean value of the Gaussian distributed asperity heights were determined in this paper. The elastic deformation of the surface asperities according to the increasing of applied force were considered. The contact resistance was also calculated by using the Greenwood analysis.

  • PDF

Non-uniform virtual material modeling on contact interface of assembly structure with bolted joints

  • Cao, Jianbin;Zhang, Zhousuo;Yang, Wenzhan;Guo, Yanfei
    • Structural Engineering and Mechanics
    • /
    • v.72 no.5
    • /
    • pp.557-568
    • /
    • 2019
  • Accurate modeling of contact interface in bolted joints is crucial in predicting the dynamic behavior for bolted assemblies under external load. This paper presents a contact pressure distribution based non-uniform virtual material method to describe the joint interface of assembly structure, which is connected by sparsely distributed multi-bolts. Firstly, the contact pressure distribution of bolted joints is obtained by the nonlinear static analysis in the finite element software ANSYS. The contact surface around bolt hole is divided into several sub-layers, and contact pressure in each sub-layer is thought to be evenly. Then, considering multi-asperity contact at the micro perspective, the relationship between contact pressure and interfacial virtual material parameters for each sub-layer is established by using the fractal contact theory. Finally, an experimental platform for the dynamic characteristics testing of a beam lap structure with double-bolted joint is constructed to validate the efficiency of proposed method. It is found that the theoretical results are in good agreement with experimental results by impact response in both time- and frequency-domain, and the relative errors of the first four natural frequencies are less than 1%. Furthermore, the presented model is used to examine the effect of rough contact surface on dynamic characteristics of bolted joint.

Mixed Lubrication Analysis of Cam/Tappet Interface on the Direct Acting Type Valvetrain System

  • Cho, Myung-Rae;Shin, Heung-Ju;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.685-692
    • /
    • 2001
  • This paper reports on the mixed lubrication characteristics between the cam and the tappet contact surface of direct acting type valve train systems. First, the dynamic characteristics are solved by using the lumped mass method to determine the load conditions at the contact point. Then, the minimum oil film thickness is calculated with consideration of elastohydrodynamic line contact theory and the friction force is obtained by using the mixed lubrication model which separates the hydrodynamic and the boundary friction. Finally, the average surface temperatures are calculated by using the flash temperature theory. The results show that, there are some peaks in the friction force due to the asperity contact friction, and flash temperature at the position of minimum oil film thickness. It is thought that there is a relationship between the surface temperature and cam surface wear, and therefore, the analysis on the worn cam profile has been performed.

  • PDF

Finite Element Analysis of Multiple Subsurface Cracks in Half-space Due to Sliding Contact

  • Lee, Sang Yun;Kim, Seock Sam
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2001
  • A finite element analysis of crack propagation in a half-space due to sliding contact was performed. The sliding contact was simulated by a rigid asperity moving across the surface of an elastic half-surface containing single and multiple cracks. Single, coplanar, and parallel cracks were modeled to investigate the interaction effects on the crack growth in contact fatigue. The analysis was based on linear elastic fracture mechanics and the stress intensity factor concept. The crack propagation direction was predicted based on the maximum range of the shear and tensile stress intensity factors.

  • PDF