• Title/Summary/Keyword: Aspergillus sp.

Search Result 287, Processing Time 0.031 seconds

Studies on Phytotoxin in Intensively Cultivated Upland Crops -II. Population and identification of soil microorganisms in rhizosphere of upland crops (연작재배지토양(連作栽培地土壤)의 식물독소(植物毒素)에 관(關)한 연구(硏究) -제(第) II 보(報). 작물근권토양(作物根圈土壤)의 미생물분포(微生物分布)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Kim, Young-Sig;Park, Jun-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.179-183
    • /
    • 1987
  • A series of laboratory experiments were conducted to find out the populations and identification of soil bacteria, fungi and their B/F ratio in the rhizosphere of intensively cultivatad hot-pepper, garlic, flower plants, chinese cabbage, and round onion. The results obtained are summarized as follows: 1. The number of bacteria, fungi and their B/F ratio are remarkably lower than that of normal paddy soils. 2. Nitrate reducers and bacteria which utilized simple sugars for their sole carbon source are predominated in the rhizosphere of intensively cultivated upland crops. 3. Alkaligenetic bacteria predominate in rhizosphere of garlic and tomato cultivated upland soils. 4. Genera of Pseudomonas, Xanthomonas, Bacillus, Arthrobacter, and Achromobacterium are the most common species in the rhizosphere of intensively cultivated upland crops and flower plants. 5. Phytotoxin producers such as Stachybotris sp. were identified in all rhizospheres of intensively cultivated upland crops and flower plants. 6. Most common and highest population of soil fungi were obtained for the genera of Penicillium, Humicola, Phoma and Aspergillus in the rhizosphere of intensively cultivated upland crops and flower plants.

  • PDF

Selecting and evaluating microorganism strains to prepare low-salt doenjang for flavoring via the fermentation of rice and soybeans (쌀 및 콩 발효 균주선발과 이를 적용한 조미용 저염된장의 평가)

  • Jo, Seung Wha;Yim, Eun Jung;Kang, Hyeon Jin;Park, Seul Ki;Jeong, Do Youn
    • Korean Journal of Food Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.103-108
    • /
    • 2022
  • This study investigated the strains and fermentation characteristics of used to ferment a mixture of rice and soybeans to manufacture low-salt doenjang for flavoring. The soybean and rice mixture was fermented using three selected strains of Aapergillus oryzae and Bacillus sp. The changes in quality of the fermented products were found to be dependent on the aging period. Therefore, the strain and a suitable aging period were seleted based on the increases in AN, total sugar, and reducing sugar. The fermented products were prepared and mixed, using the selected or commercially available strains (the sample and control, respectively), to create low-salt doenjang. Following this, their characteristics were compared. The sample had a higher content of taste-related ingredients(free amino acid, nucleic acid-related substances) than the control. Using the selected strain to ferment a rice and soybean mixture will thus be expected to enhance the flavor of industrially produced seasoned doenjang.

Fermentation characteristics of mulberry (Cudrania tricuspidata) fruits produced using microbes isolated from traditional fermented food, and development of fermented soybean food (전통장류로부터 분리한 발효미생물을 이용한 꾸지뽕 열매 발효물의 특성 및 장류제품 개발)

  • Lee, Eun-Sil;Jo, Seung-Wha;Yim, Eun-Jung;Kim, Yun-Sun;Park, Hae-Suk;Kim, Myung-Kon;Cho, Sung-Ho
    • Food Science and Preservation
    • /
    • v.21 no.6
    • /
    • pp.866-877
    • /
    • 2014
  • The aim of this study was to develop a new functional traditional fermented soybean food using Cudrania tricuspidata fruits and fermentation microbes isolated from traditional fermented food. Aspergillus oryzae koji, Lactobacillus sp., and Bacillus sp. were used for the selection of a suitable microbe for the fermentation of Cudrania tricuspidata fruits, and as a result, Bacillus licheniformis SCDB 1234 was selected. SCDB 1234 enhanced the concentration of kaempferol in the Cudrania tricuspidata fruits from 9.54 to $217.04{\mu}g/g$ (about 22 times). The DPPH radical scavenging activity of the fermented materials was similar to that of BHA and BHT (92~99 ppm). The tyrosinase inhibitory activity was high with arbutin (95 ppm) and kojic acid (90 ppm). Doenjang-added fermentation materials of the Cudrania tricuspidata fruits were developed, and the organic acid, reducing sugar, and free amino acid of the developed Doenjang were analyzed. The pancreatic lipase inhibitory (PLI) activity and ${\alpha}$-glucosidase inhibitory (AGI) activity of the fermentation materials of the Cudrania tricuspidata fruits and the developed Doenjang were investigated, and it was found that after fermentation, the PLI and AGI activities of the fermentation materials of the Cudrania tricuspidata fruits were higher than those before fermentation, and that the AGI activity of the developed Doenjang after aging ($91.25{\pm}0.04%$) was higher than that before aging ($84.89{\pm}0.08%$).

Enhanced production of monacolin-K through supplement of monacolin-K precursors into production medium and cloning of SAM synthetase gene (metK) (Precursor제공 및 생합성 관련 유전자의 cloning을 통한 Monacolin-K 생산성 향상)

  • Lee, Mi-Jin;Jeong, Yong-Seob;Chun, Gie-Taek
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.519-524
    • /
    • 2008
  • Monacolin-K is a strong anti-hypercholesterolemic agent produced by Monascus sp. via polyketide pathway. High-yielding mutants of monacolin-K were developed through rational screening strategies adopted based on understanding of monacolin-K biosynthetic pathway. Through the experiments for investigating various amino acids as putative precursors for the monacolin-K biosynthesis, it was found that production level of monacolin-K was remarkably increased when optimum amount of cysteine was supplemented into the production medium. We suggested that these phenomena might be related to the special roles of SAM (S-adenosyl methionine), a putative methyl group donor in the biosynthetic pathway of monacolin-K, demonstrating close interrelationship between SAM-synthesizing primary metabolism and monacolin-K synthesizing secondary metabolism. Namely, increase in the intracellular amount of SAM derived from the putative precursor, cysteine which was extracellularly supplemented into the production medium might contribute to the significant enhancement in the monacolin-K biosynthetic capability of the highly mutated producers. On the basis of these assumptions derived from the above fermentation results, we decided to construct efficient expression vectors harboring SAM synthetase gene (metK) cloned from A. nidulans, with the hope that increased intracellular level of SAM could lead to further enhancement in the monacolin-K production through overcoming a rate-limiting step associated with monacolin-K biosynthesis. Hence, in order to overcome the plausible rate-limiting step associated with monacolin-K biosynthesis by increasing intracellular level of SAM, we transformed the producer mutants with an efficient expression vector harboring gpdA promoter of the producer microorganism, and metK gene. Notably, from the resulting various transformants, we were able to screen a very high-yielding transformant which showed approximately 3.3 fold higher monacolin-K productivity than the parallel nontransformed mutants in shake flask cultures performed under the identical fermentation conditions.

Microbiological and Enzymological Studies on Takju Brewing (탁주(濁酒) 양조(釀造)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Kim, Chan-Jo
    • Applied Biological Chemistry
    • /
    • v.10
    • /
    • pp.69-100
    • /
    • 1968
  • 1. In order to investigate on the microflora and enzyme activity of mold wheat 'Nuruk' , the major source of microorganisms for the brewing of Takju (a Korean Sake), two samples of Nuruk, one prepared at the College of Agriculture, Chung Nam University (S) and the other perchased at a market (T), were taken for the study. The molds, aerobic bacteria, lactic acid bacteria, and yeasts were examined and counted. The yeasts were classified by the treatment with TTC (2, 3, 5 triphenyltetrazolium chloride) agar that yields a varied shade of color. The amylase and protease activities of Nuruk were measured. The results were as the followings. a) In the Nuruk S found were: Aspergillus oryzae group, $204{\times}10^5$; Black Aspergilli, $163{\times}10^5$; Rhizogus, $20{\times}10^5$; Penicillia, $134{\times}10^5$; Areobic bacteria, $9{\times}10^6-2{\times}10^7$; Lactic acid bacteria, $3{\times}10^4$ In the Nuruk T found were: Aspergillus oryzae group, $836{\times}10^5$; Black Aspergilli, $286{\times}10^5$; Rhizopus, $623{\times}10^5$; Penicillia, $264{\times}10^5$; Aerobic bacteria, $5{\times}10^6-9{\times}10^6$; Lactic acid bacteria, $3{\times}10^4$ b) Eighty to ninety percent of the aerobic bacteria in Nuruk S appeared to belong to Bacillus subtilis while about 70% of those in Nuruk T seemed to be spherical bacteria. In both Nuruks about 80% of lactic acid bacteria were observed as spherical ones. c) The population of yeasts in 1g. of Nuruk S was about $6{\times}10^5$, 56.5% of which were TTC pink yeasts, 16% of which were TTC red pink yeasts, 8% of which were TTC red yeasts, 19.5% of which were TTC white yeasts. In Nuruk T(1g) the number of yeasts accounted for $14{\times}10^4$ and constituted of 42% TTC pink. 21% TTC red pink 28% TTC red and 9% TTC white. d) The enzyme activity of 1g Nuruk S was: Liquefying type Amylase, $D^{40}/_{30},=256$ W.V. Saccharifying type Amylase, 43.32 A.U. Acid protease, 181 C.F.U. Alkaline protease, 240C.F.U. The enzyme activity of 1g Nuruk T was: Liquefying type Amylase $D^{40}/_{30},=32$ W.V. Saccharifying type amylase $^{30}34.92$ A.U. Acid protease, 138 C.F.U. Alkaline protease 31 C.F.U. 2. During the fermentation of 'Takju' employing the Nuruks S and T the microflora and enzyme activity throughout the brewing were observed in 12 hour intervals. TTC pink and red yeasts considered to be the major yeasts were isolated and cultured. The strains ($1{\times}10^6/ml$) were added to the mashes S and T in which pH was adjusted to 4.2 and the change of microflora was examined during the fermentation. The results were: a) The molds disappeared from each sample plot since 2 to 3 days after mashing while the population of aerobic bacteria was found to be $10{\times}10^7-35{\times}10^7/ml$ inS plots and $8.2{\times}10^7-12{\times}10^7$ in plots. Among them the coccus propagated substantially until some 30 hours elasped in the S and T plots treated with lactic acid but decreased abruptly thereafter. In the plots of SP. SR. TP. and TR the coccus had not appeared from the beginning while the bacillus showed up and down changes in number and diminished by 1/5-1/10 the original at the end stage. b) The lactic acid bacteria observed in the S plot were about $7.4{\times}10^7$ in number per ml of the mash in 24 hours and increased up to around $2{\times}10^8$ until 3-4 days since. After this period the population decreased rapidly and reached about $4{\times}10^5$ at the end, In the plot T the lactic acid becteria found were about $3{\times}10^8$ at the period of 24 fours, about $3{\times}10$ in 3 days and about $2{\times}10^5$ at the end in number. In the plots SP. SR. TP, and TR the lactic acid bacteria observed were as less as $4{\times}10^5$ at the stage of 24 hours and after this period the organisms either remained unchanged in population or ceased to exist. c) The maiority of lactic acid bacteria found in each mash were spherical and the change in number displayed a tendency in accordance with the amount of lactic acid and alcohol produced in the mash. d) The yeasts had showed a marked propagation since the period of 24 hours when the number was about $2{\times}10^8$ ㎖ mash in the plot S. $4{\times}10^8$ in 48 hours and $5-7{\times}10^8$ in the end period were observed. In the plot T the number was $4{\times}10^8$ in 24 hours and thereafter changed up and down maintaining $2-5{\times}10^8$ in the range. e) Over 90% of the yeasts found in the mashes of S and T plots were TTC pink type while both TTC red pink and TTC red types held range of $2{\times}10-3{\times}10^7$ throughout the entire fermentation. f) The population of TTC pink yeasts in the plot SP was as $5{\times}10^8$ much as that is, twice of that of S plot at the period of 24 hours. The predominance in number continued until the middle and later stages but the order of number became about the same at the end. g) Total number of the yeasts observed in the plot SR showed little difference from that of the plot SP. The TTC red yeasts added appeared considerably in the early stage but days after the change in number was about the same as that of the plot S. In the plot TR the population of TTC red yeasts was predominant over the T plot in the early stage which there was no difference between two plots there after. For this reason even in the plot w hers TTC red yeasts were added TTC pink yeasts were predominant. TTC red yeasts observed in the present experiment showed continuing growth until the later stage but the rate was low. h) In the plot TP TTC pink yeasts were found to be about $5{\times}10^8$ in number at the period of 2 days and inclined to decrease thereafter. Compared with the plot T the number of TTC pink yeasts in the plot TP was predominant until the middle stage but became at the later stage. i) The productivity of alcohol in the mash was measured. The plot where TTC pink yeasts were added showed somewhat better yield in the earely stage but at and after the middle stage the difference between the yeast-added and the intact mashes was not recognizable. And the production of alcohol was not proportional to the total number of yeasts present. j) Activity of the liquefying amylase was the highest until 12 hours after mashing, somewhat lowered once after that, and again increased around 36-48 hours after mashing. Then the activity had decreased continuously. Activity of saccharifying amylase also decreased at the period of 24 hours and then increased until 48 hours when it reached the maximum. Since, the activity had gradually decreased until 72 hours and rapidly so did thereafter. k) Activity of alkaline protease during the fermentation of mash showed a tendency to decrease continusously although somewhat irregular. Activity of acid protease increased until hours at the maximum, then decreased rapidly, and again increased, the vigor of acid protease showed better shape than that of alkaline protease throughout. 3. TTC pink yeasts that were predominant in number, two strains of TTC red pink yeasts that appeared throughout the brewing, and TTC red yeasts were identified and the physiological characters examined. The results were as described below. a) TTC pinkyeasts (B-50P) and two strains of TTC red pink yeasts (B-54 RP & B-60 RP) w ere identified as the type of Saccharomyces cerevisiae and TTC pink red yeasts CB-53 R) were as the type of Hansenula subpelliculosa. b) The fermentability of four strains above mentioned were measured as follows. Two strains of TTC red pink yeasts were the highest, TTC pink yeasts were the lowest in the fermantability. The former three strains were active in the early stage of fermentation and found to be suitable for manufacturing 'Takju' TTC red yeasts were found to play an important role in Takju brewing due to its strong ability to produce esters although its fermentability was low. c) The tolerance against nitrous acid of strains of yeast was marked. That against lactic acid was only 3% in Koji extract, and TTC red yeasts showed somewhat stronger resistance. The tolerance against alcohol of TTC pink and red pink yeasts in the Hayduck solution was 7% while that in the malt extract was 13%. However, that of TTC red yeasts was much weaker than others. Liguefying activity of gelatin by those four strains of yeast was not recognized even in 40 days. 4. Fermentability during Takju brewing was shown in the first two days as much as 70-80% of total fermentation and around 90% of fermentation proceeded in 3-4 days. The main fermentation appeared to be completed during :his period. Productivity of alcohol during Takju brewing was found to be apporximately 65% of the total amount of starch put in mashing. 5. The reason that Saccharomyces coreanuss found be Saito in the mash of Takju was not detected in the present experiment is considered due to the facts that Aspergillus oryzae has been inoculated in the mold wheat (Nuruk) since around 1930 and also that Koji has been used in Takju brewing, consequently causing they complete change in microflora in the Takju brewing. This consideration will be supported by the fact that the original flavor and taste have now been remarkably changed.

  • PDF

Biological Control of Tomato and Red Pepper Powdery Mildew using Paenibacillus polymyxa CW (Paenibacillus polymyxa CW를 이용한 고추 및 토마토 흰가루병 방제)

  • Kim, Yong-Ki;Choi, Eun-Jung;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Min-Jeong;Jee, Hyeong-Jin;Park, Jong-Ho;Han, Eun-Jung;Jang, Bo-Kyung;Yun, Jong-Cheul
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.379-387
    • /
    • 2013
  • In order to improve practical utility of agro-microorganisms (AMs) which had been cultured and disseminated to promote plant growth and to control crop diseases, 51 isolates of AMs were collected from 18 agricultural extension centers in local government and screened for multi-functions such as antifungal activity, activities of phosphorus solubilization, IAA and siderophore production, nitrogen fixation, and hydrolytic enzyme activity. Finally we selected one isolate showing good antifungal activity and multi-functions related to plant growth and disease control. The selected isolate, Paenibacillus polymyxa CW, showed good inhibitory effect against plant pathogens, Pyricularia gresea, Colletotrichum acutatum, Fusarium oxysporum, Phomopsis sp., Aspergillus niger, Rhizoctonia solani and Phytophthora capsici. Suppressive effect of P. polymyxa CW against the used plant pathogens except for R. solani was much higher than that of P. polymyxa AC-1 storing in National Academy of Agricultural Science. We found P. polymyxa CW isolate showed good activity in siderophore and IAA formation, and nitrogen fixation. With P. polymyxa CW isolate, siderophore formation activity was similar to that of P. polymyxa AC-1, but IAA formation and nitrogen fixation activity was much higher than that of P. polymyxa AC-1. However neither P. polymyxa CW nor P. polymyxa AC-1 showed hydrolytic enzyme (chitinase, pectinase and cellulase) activity. The treatment of P. polymyxa CW with culture suspension of different cell density ($10^8$, $10^7$. $10^6$ cfu/ml) showed that the highest density reduced incidence of red pepper powdery mildew by 68.3% after 10 days of application. As application density of P. polymyxa CW was decreased, its control efficacy was proportionally decreased. In addition, when P. polymyxa CW was treated to control tomato powdery mildew at the same concentrations and their control effects were investigated after 7 days of inoculation, disease incidence was 0.03, 19.5, 45.7%, respectively, compared to 56.3% that of untreated check. Like red pepper powdery mildew, increase of application density of P. polymyxa CW resulted in increase of its control efficacy proportionally. P. polymyxa CW showed a density-dependent control efficacy against red pepper and tomato powdery mildews. Therefore we think that mode of action of the antagonist for suppressing two powdery mildew diseases might be antibiosis and density of more than $10^8cfu/ml$ was needed to control effectively the two diseases. On this basis, we think that P. polymyxa CW can be a promising control agent for suppressing powdery mildews of red pepper and tomato.

Studies on the N-Compounds during Chung-Kook-Jang Meju Fermentation -Amino acids of oligopeptides formed during Chung-Kook-Jang Fermentation- (청국장(淸國醬)메주 발효과정중(醱酵過程中)의 질소화합물(望素化合物)의 소장(消長)에 관(關)한 연구(硏究)(II) -저급(低級) peptide와 구성(構成)아미노산(酸)에 관(關)하여-)

  • Park, Ke-In
    • Applied Biological Chemistry
    • /
    • v.15 no.2
    • /
    • pp.111-142
    • /
    • 1972
  • An experimental Chung-Kook-Jang was prepared using the strain Bacillus subtilis sp. isolated by the author Samples were taken in 12 hrs interval during the fermentation and the oligopeptides were separated by the method of molecular sieving using the ion exchange resin column of Dowex-50. Only the X-16 fraction of oligopeptides was taken and the components of oligopeptides were developed in two dimensional thin layer chromatograms. The each peptide spot was eluted and each peptide was isolated. The pattern and kinds of amino acids, and N and C-terminal amino acids were studied. Fourteen different oligopeptides could be detected by the two dimensional thin layer chromatography, all of which were consisted of $4{\sim}9$ kinds of amino acids. No dipeptides and no tripeptides could be found. The N and C-terminal amino acids and the residual component amino acids of all these 14 peptides could be summarized as the follows. [P]-I. Pro (Cys Ala Asp Trp Ile Val) Glu [P]-II. Val (His Arg Glu Thr Ala Met) Asp [P]-III. Glu (Cys Lys Asp Thr Met) Ala [P]-IV. Glu(His Ser Ala) Met) [P]-V. Ile (Cys Asp Arg Gly Pro T.p Phe) His [P]-VI. Gly(Asp ser) Lys [P]-VII. Thr(Pro Tyr Phe) Asp [P]-VIII. Phe(Tyr Leu Ile) Val [P]-IX. Trp (Phelle) Thr [P]-X. Ile (Arg Leu) Phe [P]-XI. Asp (Lys His Ser Gly Glu Pro) Ala [P]-XII. Glu (Cys Asp Gly) Ser [P]-XIII. Ala (Arg Tyr) Glu [P]-XIV. Met (Glu Ala) His It appears that the protease of the Bacillus subtilis K-27 syrain has rather wider range of specificity than proteases of Aspergoillus soya, pepsin, chymotrypsin, and trypsin.

  • PDF