• Title/Summary/Keyword: Aspen Plus

Search Result 70, Processing Time 0.021 seconds

Operating Characteristics of MCFC System on the Diversification of Fuel (연료 다변화에 따른 용융 탄산염 연료전지 시스템 운전 특성)

  • Im, Seokyeon;Sung, Yongwook;Han, Jaeyoung;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • The fuel cells have been investigated in the applications of marine as the high efficient and eco-friendly power generating systems. In this study, modeling of IR Type molten carbonate fuel cell (Internal Reforming Type molten carbonate fuel cell) has been developed to analyze the feasibility of thermal energy utilization. The model is developed under Aspen plus and used for the study of system performances over regarding fuel types. The simulation results show that the efficiency of MCFC system based on NG fuel is the highest. Also, it is also verified that the steam reforming is suitable as pre-reforming for diesel fuel.

Development of Predictive Model for Pollutants Emission from Power Plants (발전소의 대기오염물질 배출 예측 모델 개발)

  • 김민석;김경희;이인범
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.543-550
    • /
    • 1998
  • From the power plant in a steel plant, environment pollutants such as $SO_x$, $NO_x$, CO and $CO_2$ are emitted by combustion reactions of the fuels which are by-product gases, oil and liquefied natural gas(LNG). To reduce the amounts of the pollutants, it is important to build a predictive model for the emission of the pollutants. In this paper, model that predict the amounts of generated pollutants for the used fuel is developed by using Gibbs free energy minimization method[1] with the temperature correction technique. For some data set, the calculation results from this model are compared with the real emission amounts of $SO_x$, $NO_x$, and the result of the calculation by both ASPEN PLUS which is a commercial simulation software. This model shows good results and can be applied to other power plants.

  • PDF

A Reliability of Equation of State for Nitrogen, Oxygen and Argon (질소, 산소, 아르곤에 대한 상태방정식의 신뢰도)

  • Yong Pyeong-Soon;Moon Hung-Man;Son Moo-Ryong;Yi Sung-Chul
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.41-48
    • /
    • 1997
  • The equation of state is widely utilized as a simple model for the prediction of gas properties. There are several equations of state and they often make diverse and hard to believe output of gas properties. In this study, We show a reliability of equation of state for nitrogen, oxygen and argon in pressure range from 1 bar to 30 bar and temperature range from liquefaction to room temperature. We use three equations of state such as Soave-Redlich-Kwong, Peng-Robinson and BWR-LS' equation of state which provided in the Aspen plus. The results were compared with literatures and virial equation. Finally, We report the differences of process calculation of distillation column and expansion turbine in cryogenic air separation plant with change of equation of state.

  • PDF

Simulation of Separation and Purification Process of 50 kg/day Pilot Plant for DME Production (일일 50 kg DME 생산을 위한 파일럿 플랜트 분리 정제공정 모사)

  • Cho Jung-Ho;Cho Won-Il;Na Young-Jin;Shin Dong-Keun;Rhim Kye-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.22-26
    • /
    • 2006
  • In this study, modeling and simulation works using Aspen Plus were carried out for DME separation and purification process of pilot plant for the daily production of 50 kg of DME. For modeling of the entire DME separation unit, NRTL liquid activity coefficient model was used for the prediction of liquid phase non-idealities, Henry's law option was also used for the estimation of solubilities of light gases in solvents and SRK equation of state model was utilized for the description of vapor phase non-idealities. DME having over 98 wt% purity was obtained as a side distillate product in a DME purification column.

  • PDF

A Study on the N2O Separation Process from Crude N2O (Crude N2O로부터 정제된 N2O 분리공정에 관한 연구)

  • Cho, Jungho;Lee, Taekhong;Park, Jongki
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.467-473
    • /
    • 2005
  • Liquid phase nitrous oxide ($N_2O$) contains air, carbon monoxide, water, carbon dioxide and NOx as main impurities. It is known to be very dangerous to obtain a very pure $N_2O$ product by using solidification at low temperature. In this study a new method to obtain a high purity of $N_2O$ product based on a continuous distillation process was introduced. For the modeling of the continuous distillation process to obtain a product having a purity over 99.999% of $N_2O$ stream, Intalox wire gauze packing- No. SCH-80S gauze packing column was used. Peng-Robinson equation of state was used for the modeling of the continuous distillation process and refrigeration system. Computational results performed in this work showed a good agreement with Aspen Plus simulation results.

A Comparative Study of the Cold Power Generation Systems for LNG Terminal (LNG 인수기지용 냉열발전 시스템 비교 연구)

  • 김동수;박영무
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 1996
  • The heat of evaporation (cold energy) of LNG is the energy consumed in the production of LNG. This energy amounts to 14% of the NG. In Pyungtak LNG terminal, it is about 96 MW in 1993. In order to utilize the cold energy, the cold power generation systems are investigated: The Rankine cycle using the low temperature energy, the partial expansion cycle using the pressure energy, and the Linde process which is a combined cycle of the Rankine and the partial direct expansion cycle. The commercial simulator, ASPEN Plus, is used. The conceptual design data are obtained from the current facilities of the Pyungtak LNG terminal. The performances of three systems are evaluated. The amount of electric power ranges iron 3 MW to 6MW. The optimum energy efficiency is about 37%. The optimum design conditions are obtained for the partial direct expansion (PDE) cycle. The performance of the PDE cycle is supposed to be comparable to that of the Rankine cycle if the areas of the total heat exchanger of the both cycle are equal.

  • PDF

The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant (이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성)

  • O, Min-Gyu;Park, So-Jin;Han, Keun-Hee;Lee, Jong-Seop;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.128-134
    • /
    • 2012
  • The pilot scale experiments can handle the flue gas up to 1,000 $Nm^3/hr$ for separation of carbon dioxide included in real flue gas at coal-fired power plant. The operational characteristics was analyzed with the main experimental variables such as flue gas flow rate, absorbent circulation rate using chemical absorbents mono-ethanolamine( MEA) and 2-amino-2-methyl-1-propanol(AMP). The more flue gas flow rate decreased in 100 $m^3/hr$ in the MEA 20 wt% experiments, the more carbon dioxide removal efficiency was increased 6.7% on average. Carbon dioxide removal efficiency was increased approximately 2.8% according to raise of the 1,000 kg/hr absorbent circulation rate. It also was more than 90% at $110^{\circ}C$ of re-boiler temperature. Carbon dioxide removal efficiency of the MEA was higher than that of the AMP. In the MEA(20 wt%) experiment, carbon dioxide removal efficiency(85.5%) was 10% higher than result(75.5%) of ASPEN plus simulation.

Techno-Economic Analysis of Methanol to Olefins Separation Processes (메탄올을 이용한 올레핀 생산 분리공정의 기술 및 경제성 분석)

  • Park, Jonghyun;Jeong, Youngmin;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Light olefins are important petrochemicals as well as primary building blocks for various chemical intermediates. As the number of ethane cracking center (ECC) process, in which ethylene accounts for most of the production, has increased in recent years, propylene supply is not catching up with steadily increasing propylene demand. This trend makes the conversion of methanol to olefins to get more industrial importance. The methanol to olefins (MTO) process produces methanol through syngas and obtain olefins such as propylene through methanol. Since the reaction from methanol to olefins provides different product compositions depending on the catalyst used for the reaction, it is important to choose an appropriate separation process for the reaction product with different composition. Four different separation processes are considered for four representative cases of product compositions. The separation processes for the reaction products are evaluated by techno-economic analysis based on the simulation results using Aspen plus. Guidelines are provided for selecting a suitable separation process for each of representative case of product compositions in the MTO process.

Characteristics of $SF_6$ Gas Recycling Processes ($SF_6$가스 회수 공정들의 특성 연구)

  • Cho, Hoon;Woo, Dae-Sik;Choi, Yu-Mi;Han, Myung-Wan
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • $SF_6$ gas is well known as a global warming gas. Global warming potential of $SF_6$ gas is 22,000 times higher than that of $CO_2$. Recycling of $SF_6$ gas is an essential technology for the sake of the environment and the economy. The recovery processes of $SF_6$ gas studied in this work were liquefaction, distillation, and crystallization processes because these processes were thought to be easily carried to the fields for recycling waste $SF_6$ gas. The processes were simulated and optimized using Aspen plus. The optimization problems were formulated to minimize energy consumption with satisfying product specification and desired recovery. The performance of the processes was compared based on the optimization results. Effects of major process variables on the recovery performance were investigated and optimal operation guide for changing product specification and product recovery was provided.

Cryogenic Distillation Simulation for Hydrogen Isotopes Separation (수소 동위원소 분리를 위한 초저온증류공정 모사)

  • Noh, Sanggyun;Rho, Jaehyun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4643-4651
    • /
    • 2013
  • In this study, we have surveyed the new technologies in the cryogenic distillation of ITER, equilibrium reactors and helium refrigeration cycle contained in the isotope separation system (ISS). We also have collected thermodynamic and transport properties for $H_2$, HD, $D_2$, HT, DT and $T_2$ components of which properties are not built in a general purpose chemical process simulators such as Aspen Plus and PRO/II with PROVISION. Verification works have been performed to compare between literature data and simulation results. For the simulation of ISS involving six hydrogen isotope components, four distillation columns and two equilibrium reactors are used for the separation of $D_2$ and DT from $T_2$.