• 제목/요약/키워드: Aspect ratio(h/w)

검색결과 103건 처리시간 0.026초

Brake Bending Press 구조 건전성에 관한 연구 (A Study on Structural Integrity of Brake Bending Press)

  • 박중원;이현민;김상목;구태완;강범수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.190-193
    • /
    • 2008
  • Thick pipes which have large thickness have been used in fields of ocean and industrial plants, and for oil pipelines, water pipes and pipe arrangement. In manufacture of the pipes, roll bending process has been used mostly. However, studies on the pipe forming processes using brake press have been performed in recent days. Normally, the brake press has high aspect ratio, so analysis of structural integrity should be conducted. In this study, the evaluation of structural integrity of the brake bending press was carried out for thick pipe forming process.

  • PDF

쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향 (Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs)

  • 이동현;이동호;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

Microencapsulated Iron for Drink Yogurt Fortification

  • Kim, S.J.;Ahn, J.;Seok, J.S.;Kwak, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권4호
    • /
    • pp.581-587
    • /
    • 2003
  • This study was designed to examine the effect of icroencapsulated iron fortified drink yogurt and vitamin C as a bioavailable helper of iron on chemical and sensory aspects during 20 d storage. Coating material was polyglycerol monostearate (PGMS), and ferric ammonium sulfate and vit C were selected as core materials. The highest efficiency of microencapsulation of iron and vit C were 73% and 95%, respectively, with 5:1:50 ratio (w/w/v) as coating to core material to distilled water. Iron fortification did not affect the fermentation time required for the drink yogurt to reach pH 4.2. The addition of uncapsulated iron decreased the pH during storage. TBA absorbance was significantly lower in capsulated treatments than in uncapsulated treatments during storage. In sensory aspect, the yogurt sample added with uncapsulated iron and vit C, regardless of capsulation, showed a significantly high score of astringency, compared with those of control and other groups. A significantly strong sourness was observed in treatment containing capsulated iron and uncapsulated vitamin C at every time interval. The present study provides evidence that microencapsulation of iron with PGMS is effective for iron fortification in drink yogurt.

5:1의 형상비를 갖는 사각덕트에서 직조 스크린 리입(rib)이 열전달과 마찰계수에 미치는 영향 (The Effects of Woven Metal Screen Ribs on Heat Transfer and Pressure Drops in the 5:1 Aspect Ratio Rectangular Duct)

  • 오세경;아리바시아 크리시내 부트라;안수환;이명성
    • 동력기계공학회지
    • /
    • 제15권3호
    • /
    • pp.31-37
    • /
    • 2011
  • 직조 금속 스크린 리브(rib) 이 바닥에 설치된 사각 덕트에서 열전달과 유체유동의 압력강하를 측정하기 위해 실험적 연구를 수행하였다. 시험부의 치수는 200 mm(W) ${\times}$ 40 mm(H) ${\times}$ 712 mm(L)이고 수력직경은 66.6 mm이다. 입구영역에는 1.72m 길이의 가열되지 않은 동일한 치수의 채널을 설치하였다. 메쉬가 다른 4가지의 직조금속 스크린 리브에 대해 측정하였다. 그리고 비교를 위해 일체형 리브에 대해서도 측정하였다. 국부 열전달 계수의 측정에는 스테인레스 강제 포일(foil) 히터와 T형 열전대률 이용하였다. 레이놀즈 수는 23,000에서 58,000의 범위이다. 덕트의 수력직경($D_h$)에 대한 직조 금속 리브의 높이(e)의 비($e/D_h$)는 0.075 이고 리브 간격(p)과 높이의 비(p/e)는 10이다. 실험 결과 메쉬가 없는 일체형 리입에서 가장 누셀트 수와 마찰계수가 컷다.

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 ( I ) - 엇갈린 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region ( I ) - Cross Ribbed Duct -)

  • 김경민;김윤영;이동호;조형희
    • 대한기계학회논문집B
    • /
    • 제29권6호
    • /
    • pp.737-746
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the cross arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of $2\;mm\;(e){\times}\;mm\;(w)$ and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio ($e/D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The heat transfer data of the smooth duct for various Ro numbers agree well with not only the McAdams correlation but also the previous studies. The cross-rib turbulators significantly enhance heat/mass transfer in the passage by disturbing the main flow near the surfaces and generating one asymmetric cell of secondary flow skewing along the ribs. Because the secondary flow is induced in the first-pass and turning region, heat/mass transfer discrepancy is observed in the second-pass even for the stationary case. When the passage rotates, heat/mass transfer and flow phenomena change. Especially, the effect of rotation is more dominant than the effect of the ribs at the higher rotation number in the upstream of the second-pass.

곡관부를 가지는 내부 냉각유로에서 회전수 변화에 따른 열전달 및 유동 특성 (II) - 평행한 요철배열 덕트 - (Effects of Rotation Speed on Heat Transfer and Flow in a Coolant Passage with Turning Region (II) - Parallel Ribbed Duct -)

  • 김경민;김윤영;이동현;조형희
    • 대한기계학회논문집B
    • /
    • 제29권8호
    • /
    • pp.911-920
    • /
    • 2005
  • The present study investigates heat/mass transfer and flow characteristics in a ribbed rotating passage with turning region. The duct has an aspect ratio (W/H) of 0.5 and a hydraulic diameter ($D_h$) of 26.67 mm. Rib turbulators are attached in the parallel arrangement on the leading and trailing surfaces of the passage. The ribs have a rectangular cross section of 2 m (e) $\times$ 3 m (w) and an attack angle of $70^{\circ}$. The pitch-to-rib height ratio (p/e) is 7.5, and the rib height-to-hydraulic diameter ratio (e/$D_h$) is 0.075. The rotation number ranges from 0.0 to 0.20 while the Reynolds number is constant at 10,000. To verify the heat/mass transfer augmentation, internal flow structures are calculated for the same conditions using a commercial code FLUENT 6.1. The results show that a pair of vortex cells are generated due to the symmetric geometry of the rib arrangement, and heat/mass transfer is augmented up to $Sh/Sh_0=2.9$ averagely, which is higher than that of the cross-ribbed case presented in the previous study for the stationary case. With the passage rotation, the main flow in the first-pass deflects toward the trailing surface and the heat transfer is enhanced on the trailing surface. In the second-pass, the flow enlarges the vortex cell close to the leading surface, and the small vortex cell on the trailing surface side contracts to disappear as the passage rotates faster. At the highest rotation number ($R_O=0.20$), the turn-induced single vortex cell becomes identical regardless of the rib configuration so that similar local heat/mass transfer distributions are observed in the fuming region for the cross- and parallel-ribbed case.

3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수;최홍일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

거칠기 형상이 마찰 계수와 열전달에 미치는 영향 (Effects of Rib Geometries on the Friction Factors and Heat Transfer in the Channel)

  • 안수환;손강필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.241-247
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with ones roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at e/De=0.0476, P/e=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones in the range we studied.

  • PDF

An Investigation on Friction Factors and Heat Transfer Coefficients in a Rectangular Duct with Surface Roughness

  • Ahn, Soo-Whan;Son, Kang-Pil
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.549-556
    • /
    • 2002
  • An investigation on the fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with one-side roughened by five different shapes. The effects of rib shape geometries as well as Reynolds numbers are examined. The rib height-to-duct hydraulic diameter, pitch-to-height ratio, and aspect ratio of channel width to height are fixed at e/De=0.0476, P/e=8, and W/H=2.33, respectively. To understand the characteristics of heat transfer enhancements, the friction factors are also measured. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones.

사각 덕트에서 거칠기 형상이 마찰계수와 열전달에 미치는 효과 (Effects of Rib Shapes on the Friction Factors and Heat Transfer in a Rectangular Duct)

  • 안수환;손강필
    • 설비공학논문집
    • /
    • 제13권5호
    • /
    • pp.341-347
    • /
    • 2001
  • A comparison of fully developed heat transfer and friction factor characteristics has been made in rectangular ducts with ones roughened by five different shapes. The effects of rib shape geometries and Reynolds number are examined. The rib height-to-duct hydraulic diameter, pitch-to height ratio, and aspect ratio of channel width to height are fixed at $e$/De=0.0476, P/$e$=8, and W/H=2.33, respectively. To understand the mechanisms of the heat transfer enhancements, the measurements of the friction factors are also conducted in the smooth and rough channels. The data indicates that the triangular type rib has a substantially higher heat transfer performance than any other ones in the range we studied.

  • PDF