• Title/Summary/Keyword: Asian summer monsoon

Search Result 85, Processing Time 0.023 seconds

Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5) (기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가)

  • Lee, So-Jeong;Hyun, Yu-Kyung;Lee, Sang-Min;Hwang, Seung-On;Lee, Johan;Boo, Kyung-On
    • Atmosphere
    • /
    • v.30 no.3
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

Strengthened Madden-Julian Oscillation Variability improved the 2020 Summer Rainfall Prediction in East Asia

  • Jieun Wie;Semin Yun;Jinhee Kang;Sang-Min Lee;Johan Lee;Baek-Jo Kim;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.185-195
    • /
    • 2023
  • The prolonged and heavy East Asian summer precipitation in 2020 may have been caused by an enhanced Madden-Julian Oscillation (MJO), which requires evaluation using forecast models. We examined the performance of GloSea6, an operational forecast model, in predicting the East Asian summer precipitation during July 2020, and investigated the role of MJO in the extreme rainfall event. Two experiments, CON and EXP, were conducted using different convection schemes, 6A and 5A, respectively to simulate various aspects of MJO. The EXP runs yielded stronger forecasts of East Asian precipitation for July 2020 than the CON runs, probably due to the prominent MJO realization in the former experiment. The stronger MJO created stronger moist southerly winds associated with the western North Pacific subtropical high, which led to increased precipitation. The strengthening of the MJO was found to improve the prediction accuracy of East Asian summer precipitation. However, it is important to note that this study does not discuss the impact of changes in the convection scheme on the modulation of MJO. Further research is needed to understand other factors that could strengthen the MJO and improve the forecast.

Analysis of the Ozone Transport and Seasonal Variability in the Tropical Tropopause Layer using MERRA-2 Reanalysis Data (MERRA-2 재분석자료를 활용한 적도 대류권계면층의 오존 수송 및 계절변동성 분석)

  • Ryu, Hosun;Kim, Joowan
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.91-102
    • /
    • 2020
  • MERRA-2 ozone and atmospheric data are utilized to test the usefulness of reanalysis-based tracer transport analysis for ozone in the tropical tropopause layer (TTL). Transport and mixing processes related to the seasonal variation of TTL ozone are examined using the tracer transport equation based on the transformed Eulerian mean, and the results are compared to previously proposed values from model analyses. The analysis shows that the seasonal variability of TTL ozone is mainly determined by two processes: vertical mean transport and horizontal eddy mixing of ozone, with different contributions in the Northern and Southern Hemispheres. The horizontal eddy mixing process explains the major portion of the seasonal cycle in the northern TTL, while the vertical mean transport dominates in the southern TTL. The Asian summer monsoon likely contributes to this observed difference. The ozone variability and related processes in MERRA-2 reanalysis show qualitatively similar features with satellite- and model-based analyses, and it provides advantages of fine-scale analyses. However, it still shows significant quantitative biases in ozone budget analysis.

Influence of Boreal Summer Intraseasonal Oscillation on Korean Precipitation and its Long-Term Changes (여름철 계절안 진동이 한반도 강수에 미치는 영향 및 장기 변화 특성 연구)

  • Lee, June-Yi;Hsu, Pang-Chi;Moon, Suyeon;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2017
  • By analyzing Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) from May to September for 1951~2007, this study investigates impacts of two dominant boreal summer intraseasonal oscillation (BSISO) modes on precipitation over Monsoon Asia including Korea and long-term change of 10~20-day and 30~60-day ISO over Korea. It is shown that BSISO strongly modulates rainfall variability over the many part of Monsoon Asia including Korea. Korea tends to have more (less) rainfall during the phases 3~5 (7~8) of BSISO1 representing the canonical northward/northeastward propagating 30~60-day ISO and during the phases 6~8 (3~5) of BSISO2 representing the northward/northwestward propagating 10~20-day ISO. It is found that the 10~20-day ISO variability contributes to summer mean rainfall variability more than 30~60-day ISO over Korea. For the 57 years of 1951~2007, the correlation coefficient between the May to September mean precipitation anomaly and standard deviation of 10~20-day (30~60-day) ISO is 0.71 (0.46). It is further noted that there is a significant increasing trend in the 10~20-day and 30~60-day ISO variability in the rainy season during the period of 1951 to 2007.

Intercomparison of the East-Asian Summer Monsoon on 11-18 July 2004, simulated by WRF, MM5, and RSM models (WRF, MM5, RSM 모형에서 모의한 2004년 7월 11-18일의 동아시아 몬순의 비교)

  • Ham, Su-Ryun;Park, Seon-Joo;Bang, Cheol-Han;Jung, Byoung-Joo;Hong, Song-You
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.91-99
    • /
    • 2005
  • This study compares the summer monsoon circulations during a heavy rainfall period over the Korean peninsular from 11 to 18 July 2004, simulated by three widely used regional models; WRF, MM5, and RSM. An identical model setup is carried out for all the experiments, except for the physical option differences in the RSM. The three models with a nominal resolution of about 50 km over Korea are nested by NCEP-DOE reanalysis data. Another RSM experiment with the same cumulus parameterization scheme as in the WRF and MM5 is designed to investigate the importance of the representation of subgrid-scale parameterized convection in reproducing monsoonal circulations in East Asia. All thee models are found to be capable of reproducing the general distribution of monsoonal precipitation, extending northeastward from south China across the Korean peninsula, to northern Japan. The results from the WRF and MM5 are similar in terms of accumulated precipitation, but a slightly better performance in the WRF than in the MM5. The RSM improves the bias for precipitation as compared to those from the WRF and MM5, but the pattern correlation is degraded due to overestimation of precipitation in northern China. In the comparison of simulated synoptic scale features, the RSM is found to reproduce the large-scale features well compared to the results from the MM5 and WRF. On the other hand, the simulated precipitation from the RSM with the convection scheme used in the MM5 and WRF is closer to that from the WRF and MM5 simulations, indicating the significant dependency of simulated precipitation in East Asia on the cumulus parameterization scheme.

Impacts of the High Resolution Land Cover Data on the 1989 East-Asian Summer Monsoon Circulation in a Regional Climate Model (지역기후모델에서 고해상도 지면피복이 1989년 동아시아 여름몬순 순환에 미치는 영향)

  • Suh, Myoung-Seok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.15 no.2
    • /
    • pp.75-90
    • /
    • 2005
  • This study examines the impacts of land cover changes on the East Asia summer monsoon with the National Center for Atmospheric Research Regional Climate Model (NCAR RegCM2), coupled with Biosphere Atmosphere Transfer Scheme (BATS). To assess the goals, two types of land cover maps were used in the simulation of summer climate. One type was NCAR land cover map (CTL) and the other was current land cover map derived from satellite data (land cover: LCV). Warm and cold surface temperature biases of $1-3^{\circ}C$ occurred over central China and Mongolia in CTL. The model produced excessive precipitation over northern land area but less over southern ocean of the model domain. Changes of biophysical parameters, such as albedo, minimum stomatal resistance and roughness length, due to the land cover changes resulted in the alteration of land-atmosphere interactions. Latent heat flux and wind speed in LCV increased noticeably over central China where deciduous broad leaf trees have been replaced by mixed farm and irrigated crop. As a result, the systematic warm biases over central China were greatly reduced in LCV. Strong cooling of central China decreased pressure gradient between East Asian continent and Pacific Ocean. The decreased pressure gradient suppressed the northward transport of moisture from south China and South China Sea. These changes reduced not only the excessive precipitation over north China and Mongolia but also less precipitation over south China. However, the land cover changes increased the precipitation over the Korean Peninsula and the Japan Islands, especially in July and August.

The Distribution of POC and DOC in Four Reservoirs on the North Han River and the Relationship with Algal Density (북한강수계 호수의 POC와 DOC 분포와 조류밀도의 관계)

  • Kim, Kiyong;Kim, Bomchul;Eom, Jaesung;Choi, Youngsoon;Jang, Changwon;Park, Hae-kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.840-848
    • /
    • 2009
  • Spatial and temporal distributions of POC and DOC were surveyed in the North Han River system, Korea The proportion of algal cells was calculated in four reservoirs (Lakes Soyang, Paro, Chunchon, and Uiam). Monthly average DOC concentrations ranged from 1.5 to 2.3 mg C/L, and POC showed larger variation than DOC (range 0.3 to 1.9 mg C/L). The average proportion of POC in TOC was higher than those of typical natural lakes. Due to the influence of the Asian summer monsoon, the seasonal variation in POC concentration depended on heavy rain events occurring during the summer. POC concentrations increased during the summer monsoon season due to turbid storm runoff laden with debris, while DOC concentrations did not increase. The highest POC concentrations were observed in Lake Soyang in 2006 when a severe rain event occurred. In two deep stratified reservoirs (Lake Soyang and Paro) storm runoffs formed an intermediate turbidity layer with high POC and chlorophyll concentrations which is thought to originate from terrestrial debris and periphyton transported by inflowing streams. The proportion of algal cells in total POC was much lower than for most natural lakes, and it varied with season; low in the monsoon season and high in dry seasons with algal blooms. An analysis of POC concentration and chlorophyll a concentration showed that the ratio of POC/Chl.a varied from 24 to 80.

Future Climate Projection over East Asia Using ECHO-G/S (ECHO-G/S를 활용한 미래 동아시아 기후 전망)

  • Cha, Yu-Mi;Lee, Hyo-Shin;Moon, JaYeon;Kwon, Won-Tae;Boo, Kyong-On
    • Atmosphere
    • /
    • v.17 no.1
    • /
    • pp.55-68
    • /
    • 2007
  • Future climate changes over East Asia are projected by anthropogenic forcing of greenhouse gases and aerosols using ECHO-G/S (ECHAM4/HOPE-G). Climate simulation in the 21st century is conducted with three standard SRES scenarios (A1B, B1, and A2) and the model performance is assessed by the 20th Century (20C3M) experiment. From the present climate simulation (20C3M), the model reproduced reliable climate state in the most fields, however, cold bias in temperature and dry bias of summer in precipitation occurred. The intercomparison among models using Taylor diagram indicates that ECHO-G/S exhibits smaller mean bias and higher pattern correlation than other nine AOGCMs. Based on SRES scenarios, East Asia will experience warmer and wetter climate in the coming 21st century. Changes of geographical patterns from the present to the future are considerably similar through all the scenarios except for the magnitude difference. The temperature in winter and precipitation in summer show remarkable increase. In spite of the large uncertainty in simulating precipitation by regional scale, we found that the summer (winter) precipitation at eastern coast (north of $40^{\circ}N$) of East Asia has significantly increased. In the 21st century, the warming over the continents of East Asia showed much more increase than that over the ocean. Hence, more enhanced (weakened) land-sea thermal contrast over East Asia in summer (winter) will cause strong (weak) monsoon. In summer, the low pressure located in East Asia becomes deeper and the moisture from the south or southeast is transported more into the land. These result in increasing precipitation amount over East Asia, especially at the coastal region. In winter, the increase (decrease) of precipitation is accompanied by strengthening (weakening) of baroclinicity over the land (sea) of East Asia.

Pollutant Flux Releases During Summer Monsoon Period based on Hydrological Modeling in Two Forested Watersheds, Soyang Lake

  • Kang, S.H.
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, specific pollutant releases during the Asian monsoon season were estimated and the information was applied to the non-point pollutant sources management from two forested watersheds of the Soyang Lake. The two watersheds are part of the 2,703 km2 Soyang Lake watershed in the northern region of the Han River. The outlets of the two watersheds were respectively analyzed for continuous water quality concentration and for discharge during various single rainfall events. Statistical power function methods are utilized to compare stream discharge and pollutant flux release during the study period. Based on the monitoring data during the study period, the specific load flux method using simulated discharge was conducted and validated in the two watersheds. The model predictions corresponded well with the measured and calculated pollutant releases. The modeling approach taken in this study was found to be applicable for the two forested watersheds.