• Title/Summary/Keyword: Ash solution

Search Result 329, Processing Time 0.022 seconds

Evaluation of protective coatings for geopolymer mortar under aggressive environment

  • Rathinam, Kumutha;Kanagarajan, Vijai;Banu, Sara
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.219-231
    • /
    • 2020
  • The aim of this study is to investigate the durability of fly ash based geopolymer mortar with and without protective coatings in aggressive chemical environments. The source materials for geopolymer are Fly ash and Ground Granulated Blast furnace Slag (GGBS) and they are considered in the combination of 80% & 20% respectively. Two Molarities of NaOH solution were considered such as 8M and 10M. The ratio of binder to sand and Sodium silicate to Sodium hydroxide solution (Na2SiO3/NaOH) are taken as 1:2 and 2 respectively. The alkaline liquid to binder ratio is 0.4. Compressive strength tests were conducted at various ages of the mortar specimens. In order to evaluate the performance of coatings on geopolymer mortar under aggressive chemical environment, the mortar specimens were coated with two different types of coatings such as epoxy and Acrylic. They were then subjected to different chemical environments by immersing them in 10% standard solutions of each ammonium nitrate, sodium chloride and sulphuric acid. Drop in compressive strength as a result of chemical exposure was considered as a measure of chemical attack and the drop in compressive strength was measured after 30 and 60 days of chemical exposure. The compressive strength results following chemical exposure indicated that the specimens containing the acrylic coating proved to be more resistant to chemical attacks. The control specimen without coating showed a much greater degree of deterioration. Therefore, the application of acrylic coating was invariably much more effective in improving the compressive strength as well as the resistance of mortar against chemical attacks. The results also indicated that among all the aggressive attacks, the sulphate environment has the most adverse effect in terms of lowering the strength.

A Study on the pH Reduction of Cement Concrete with Various Mixing Conditions (시멘트 콘크리트의 배합조건에 따른 pH 저감에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.79-85
    • /
    • 2008
  • The purpose of this study is to evaluate the mix design of pH reducing cement concrete which can be used for environment-friendly concrete. Cement pastes and concretes are prepared with water-binder ratios and various admixtures such as blast-furnace slag, fly ash and recycled cement, and tested for compressive strength and pH. pH is measured through pore solution expressed from hydrated cement paste by special apparatus. From the test results, regardless of water-binder ratio, The pH of expressed pore solution from hydrated cement paste which is made of ordinary portland cement with blast-furnace slag, fly ash is decreased with increasing of admixtures content, and compressive strength is also slightly improved. The compressive strength of cement paste made of recycled cement which is burnt at $1000^{\circ}C$, for 2 hours is considerably increased compared with that of none-burnt recycled cement due to restoration of hydraulic property, but pH is a little higher. Porous concrete with ordinary portland cement has high pH in the range of 12.22 to 12.59, however, that is reduced to the range of 8.95 to 10.39 by carbonation at the surface of porous concrete. The pH reduction of porous concrete is possible by various admixture addition, however their degrees are very slight. Therefore, to reduce the pH considerably, carbonation method of porous concrete is better in pH reduction methods for plant survival condition of pH of 9.0 or less. In this study, it is apparent that pH for the environment-friendly porous concrete products used in the construction field can be suppressed by this carbonation method and various admixtures addition.

Comparison of Cs and Sr Ion Adsorption Capacities with Crystallinity of Zeolitic Materials Synthesized from Coal Fly Ash under Low-Alkaline Conditions (석탄 비산재로부터 저알칼리 조건에서 합성된 제올라이트 물질의 결정화도에 따른 Cs 및 Sr 이온의 흡착 용량 비교)

  • Choi, Jeong-Hak;Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.171-180
    • /
    • 2022
  • Zeolitic material, Z-Y3, was synthesized from coal fly ash (CFA) under low-alkaline conditions (NaOH/CFA ratio = 0.3 and NaOH solution concentrations of 0.0, 0.5, and 1.0 M) using a fusion/hydrothermal method. The adsorption capacities of the fabricated Z-Y3 samples for Cs and Sr ions and the desorption capacity of Na ions were evaluated. The XRD patterns of the Z-Y3 sample fabricated using a 1.0 M NaOH solution (Z-Y3 (1.0 M)) indicated the successful synthesis of a zeolitic material, because the diffraction peaks of Z-Y3 coincided with those of the Na-A zeolite in the 2θ range of 7.18-34.18. Moreover, the SEM images revealed that morphology of the Z-Y3 (1.0 M) sample, which presented zeolitic materials characteristics, consisted of sharp-edged cubes. The adsorption isotherms of Cs and Sr ions on all the fabricated Z-Y3 samples were described using the Langmuir model, and the maximum adsorption capacities of Cs and Sr were calculated to be 0.14-0.94 mmol/g and 0.19-0.78 mmol/g, respectively. The desorption of Na ions from the Cs and Sr ions adsorbed Z-Y3 samples followed the Langmuir desorption model. The maximum desorption capacities of Na ions from the Cs and Sr ions adsorbed Z-Y3 (1.0 M) samples were 1.28 and 1.49 mmol/g, respectively.

Adsorption Effect of Heavy Metals (Zn, Ni, Cd, Cu) in Aqueous Solution Using Bottom Ash of Biomass Power Plant (바이오매스 발전소 저회를 활용한 수용액 내 중금속(Zn, Ni, Cd, Cu) 흡착 효과)

  • So-Hui Kim;Seung-Gyu Lee;Jin-Ju Yun;Jae-Hyuk Park;Se-Won Kang;Ju-Sik Cho
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.252-260
    • /
    • 2022
  • BACKGROUND: The number of biomass power plants is increasing around the world and the amount of wastes from power plants is expected to increase. But the bottom ash (BA) is not recycled and has been dumped in landfill. This study was conducted to find out functional groups of BA and adsorption rate of heavy metals on BA. METHODS AND RESULTS: The BA was dried in oven at 105℃ for 24 hours, and characterized by analyzing the chemistry, functional group, and surface area. The adsorption rates of heavy metals on BA were evaluated by different concentration, time, and pH. As a result, the adsorption amount of the heavy metals was high in the order of Zn> Cu> Cd> Ni and the removal rates of Zn, Cu, Cd, and Ni by BA was 49.75, 30.20, 32.46, and 36.10%, respectively. Also, the maximum adsorption capacity of BA was different by the heavy metal in the environmental conditions, and it was suggested that the isotherms for Zn, Ni, Cd, and Cu were adequate to Langmuir model. CONCLUSION(S): It is suggested that it would be effective to remove heavy metals in aqueous solution by using BA from biomass power plants in South Korea.

Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics

  • Gulsan, Mehmet Eren;Mohammedameen, Alaa;Sahmaran, Mustafa;Nis, Anil;Alzeebaree, Radhwan;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.2
    • /
    • pp.199-220
    • /
    • 2018
  • In this study, the effects of sulphuric acid on the mechanical performance and the durability of Engineered Cementitious Composites (ECC) specimens were investigated. The carbon fiber reinforced polymer (CFRP) and basalt fiber reinforced polymer (BFRP) fabrics were used to evaluate the performances of the confined and unconfined ECC specimens under static and cyclic loading in the acidic environment. In addition, the use of CFRP and BFRP fabrics as a rehabilitation technique was also studied for the specimens exposed to the sulphuric acid environment. The polyvinyl alcohol (PVA) fiber with a fraction of 2% was used in the research. Two different PVA-ECC concretes were produced using low lime fly ash (LCFA) and high lime fly ash (HCFA) with the fly ash-to-OPC ratio of 1.2. Unwrapped PVA-ECC specimens were also produced as a reference concrete and all concrete specimens were continuously immersed in 5% sulphuric acid solution ($H_2SO_4$). The mechanical performance and the durability of specimens were evaluated by means of the visual inspection, weight change, static and cyclic loading, and failure mode. In addition, microscopic changes of the PVA-ECC specimens due to sulphuric acid attack were also assessed using scanning electron microscopy (SEM) to understand the macroscale behavior of the specimens. Results indicated that PVA-ECC specimens produced with low lime fly ash (LCFA) showed superior performance than the specimens produced with high lime fly ash (HCFA) in the acidic environment. In addition, confinement of ECC specimens with BFRP and CFRP fabrics significantly improved compressive strength, ductility, and durability of the specimens. PVA-ECC specimens wrapped with carbon FRP fabric showed better mechanical performance and durability properties than the specimens wrapped with basalt FRP fabric. Both FRP materials can be used as a rehabilitation material in the acidic environment.

Cultivate Characterics of Chili Growth using Nutrient Solution in Articifial Soil (인공 토양에서의 양액을 이용한 고추의 재배 특성)

  • Yoon, Sang Jin;Sean, Keefe Dimas Harris;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Park, Jong Min;Kim, Jong Soon;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.351-357
    • /
    • 2017
  • Growing plant in potting media without soil is known as Soilless cultivation. This method is used mostly in greenhouse cultivation to increase horticultural commodities production. Peat moss is commonly utilized as potting media substrate because of its characteristic. However, peat moss price is high because of the quantity of peat moss in nature has been decreased. Recently, most of the research is conducted to find the alternative growing medium to cultivate horticulture plant in potting media. Perlite and rice husk ash were mentioned that had a potent as alternative growing media for seasonal plants to increase agriculture production due to the lack of production area. This study aimed to determine the effect of using different substrate and growth performance of chili. The method used was the soilless cultivation. The chili was planted in the pot with perlite media, rice husk ash media, and peat moss media. The chili was measured after 65 days after planting. The result showed that rice husk ash and perlite were more potentials in chili growth performance than peat moss. Rice husk ash had the significant result of plant height. While, Perlite effect on root length, plant weight, leaf length, and stem diameter. The best alternative for cultivation chili without substrate based on this research was perlite then rice husk ash and peat moss.

Synthesis of Mullite and Zeolite from Fly Ash Refined by Multi-Air Classification (다중자연낙하 공기분급에 의한 정제석탄회로부터 뮬라이트 및 제올라이트의 합성)

  • Hwang, Yeon;Bae, Kwang-Hyun
    • Resources Recycling
    • /
    • v.10 no.6
    • /
    • pp.29-34
    • /
    • 2001
  • Fly ash powders were refined and separated into fine and coarse size by multi-air classification, and each particle was used for synthesizing mullite and zeolite. Mullite was prepared by sintering the mixture of fine fly ash with mean size of 6.5 $\mu$m and $A1_2$$O_3$powder at above $1450^{\circ}C$. Zeolite was synthesized through hydrothermal reaction with coarse fly ash mean size of $56.3\mu$m in 3.5 M NaOH solution at $120^{\circ}C$. The whole range of particle size can be recycled through size classification into fine and coarse fractions, which are used for syntheses of inorganic materials.

  • PDF

Fabrication of Mullite Short Fibers from Coal Fly Ash (석탄회로부터 뮬라이트 단섬유의 제조)

  • Kim, Byung-Moon;Park, Young-Min;Lyu, Seung-Woo;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.235-241
    • /
    • 2006
  • Mullite short fibers have been fabricated by adapting the Kneading-Drying-Calcination (KDC) process and characterized. The effect of the addition of foaming agent and calcination temperature on the formation of mullite fibers from coal fly ash, was examined. In the present work, ammonium alum $NH_4Al(SO_4)_2\;12H_2O$ synthesized trom coal fly ash and sodium phosphate $Na_2HPO_4\;2H_2O$ were used as foaming agents. After calcination at $1300^{\circ}C$ for 10 h and then etching with 20% HF solution at $50^{\circ}C$ for 5 h using a microwave heating source, the alumina-deficient $(AI_2O_3/SiO_2$ = 1.13, molar ratio) orthorhombic mullite fibers with a width of ${\sim}0.8mm$ (aspect ratio >30), were prepared from the coal fly ash with $AI_2O_3/SiO_2$ = 0.32, molar ratio by the addition of $NH_4AI(SO_4)_2\;12H_2O$, and with further addition of 2 wt% sodium phosphate. The excessive addition of sodium phosphate rather decreased the formation of mullite fibers, possibly due to the large amount of liquid phase prior to mullitization reaction.

Effects of HA and TiN Coating on the Electrochemical Characteristics of Ti-6Al-4 V Alloys for Bone Plates

  • Oh, Jae-Wook;Choe, Han-Cheol;Ko, Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.249-252
    • /
    • 2004
  • Effects of HA and TiN coating on the electrochemical characteristics of Ti-6AI-4V alloys for bone plates were investigated using various test methods. Ti-6AI-4V alloys were fabricated by using a vacuum induction furnace and bone plates were made by laser cutting and polishing. HA was made of extracted tooth sintered and then tooth ash was used as HA coating target. The TiN and HA film coating on the surface were carried on using electron-beam physical vapor deposition (EB-PVD) method. The corrosion behaviors of the samples were examined through potentiodynamic method in 0.9% NaCI solutions at $36.5\pm$$1^{\circ}C$ and corrosion surface was observed using SEM and XPS. The surface roughness of TiN coated bone plates was lower than that of tooth ash coated plates. The structure of TiN coated layer showed the columnar structure and tooth ash coated layer showed equiaxed and anisotrophic structure. The corrosion potential of the TiN coated specimen is comparatively high. The active current density of TiN and tooth ash coated alloy showed the range of about $1.0xl0^{-5}$ $A\textrm{cm}^2$, whereas that of the non-coated alloy was$ 1.0xl0^{-4}$ $A\textrm{cm}^2$. The active current densities of HA and TiN coated bone plates were smaller than that of non-coated bone plates in 0.9% NaCl solution. The pitting potential of TiN and HA coated alloy is more drastically increased than that of the non-coated alloy. The pit number and pit size of TiN and HA coated alloy decreased in compared with those of non-coated alloy. For the coated samples, corrosion resistance increased in the order of TiN coated, tooth ash coated, and non-coated alloy.

The Study on the Removal Process of Heavy Metals from Mine Drainage Using Coal Bottom Ash (석탄 바닥회를 이용한 광산배수의 중금속 제거 공정 연구)

  • Kim, Hye Rim;Lee, Jung Mi;Han, In Kyu
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.41-47
    • /
    • 2020
  • This study was carried out to utilize the coal bottom ash generated in a circulating fluidized bed combustion boiler as a treatment agent for heavy metal ions, and experiments were conducted to remove heavy metal ions from the acid mine drainage. The batch experiments were conducted to investigate the influence of dosage of ash, initial concentration of solution on the removal capacity of heavy metal ions (Cu, Cd, Cr, Pb). The results of the experiment showed that the total removal capacity of heavy metals was 30.8 mg/L and 46.4 mg/g, respectively, under the condition that the concentration of coal ash was added as 15 g/L of heavy materials and 10 g/L of light materials. After that, a long-term column experiment was performed to determine the maximum removal capacity of heavy metal ions (Cu, Cd, Cr, Pb, As), and the removal capacity for each metal component was investigated. After approximately 60 days of operation, the maximum removal capacity of heavy metals was 23.6 mg/g at pH 9.25.