• Title/Summary/Keyword: Ash content

Search Result 2,605, Processing Time 0.036 seconds

An Experimental Study on Freezing and Thawing Resistance of Fly Ash Concrete (플라이애쉬 콘크리트의 동경융해저항성에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.128-133
    • /
    • 2001
  • It is generally known that the concrete structure subjected to severe environment is much affected by the corrosion of reinforcement, the freezing and thawing action of concrete structure. The main objective of this study is to investigate the freezing and thawing resistance of concrete including fly ash. The effect of the air content in concrete using fly ash is investigated. The experimental study is conducted for 10 mix-ratio cases of concrete of which variables are content of fly ash, concrete compressive strength and containment of air-entrained admixtures. Test results show that the freezing and thawing resistance improves as the amounts of fly ash increase, and concrete with air-entrained admixtures has good freezing and thawing resistance. The concrete with fly ash is to be included air-entrained admixture according to content of fly ash in order to increase the freezing and thawing resistance.

  • PDF

An Experimental Study on Strength Development of Concrete Including Fly Ash (석탄재가 혼입된 콘크리트 강도발현에 관한 연구)

  • 배성용
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.66-71
    • /
    • 2000
  • The main objectives of this study are to carried out in order to evaluate strength development of Fly Ash concrete containing various amounts of Fly Ash such as 0%, 10%, 20% and 30%. The experimental variables included in this test program consist of content of Fly Ash, concrete strength and chemical activation. As Fly Ash increases, air content, strength development of concrete and slump loss of normal strength concrete were gradually decreased. The inclusion of Na$_2$SO$_4$increased the short-term strength of concrete that contains Fly Ash. In addition, the strength development of concrete that contains Fly Ash and Na$_2$SO$_4$were improved.

  • PDF

Hydration, Strength and pH Properties of Porous Concrete Using Rice Husk Ash

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • This study was performed to evaluate void ratio, compressive and flexural strengths, and pH properties according to the content ratio of rice husk ash, aggregate size, and neutral treatment time of porous concrete with content of rice husk ash produced as an agricultural by-product. The SEM results for cement mortar with a 5% rice husk ash for the weight of cement formed more C-S-H hydrates due to the $SiO_2$ of rice husk ash. In the XRD test, cement mortar with a 5% rice husk ash for the weight of cement registered a higher peak point of approximately $2{\theta}=20{\sim}25^{\circ}$ compared to cement mortar without rice husk ash. According to the results of the XRD and SEM tests, the $SiO_2$ that was a major chemical element of rice husk ash generated a large amount of calcium hydroxide in the early stage of the hydration process of cement leading to the formation of ettringite. The void ratio of porous concrete with rice husk ash decreased with increasing content ratio of rice husk ash. In addition, the void ratio of porous concrete with rice husk ash decreased compared to porous concrete without rice husk ash. The compressive and flexural strength of porous concrete with a 5% and 10% content ratio of rice husk ash slightly increased compared to concrete without rice husk ash. The pH value of porous concrete rapidly decreased immediately after neutral treatment. Then, it gradually increased and decreased again after 14 days. However, the pH value was nearly the same regardless of neutral treatment time in 28 curing days. Also, for neutral treatment, the pH value of porous concrete showed appropriate pH levels (less than 9.5) in all mixtures for planting at 28 curing days.

Modeling slump of concrete with fly ash and superplasticizer

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.6
    • /
    • pp.559-572
    • /
    • 2008
  • The effects of fly ash and superplasticizer (SP) on workability of concrete are quite difficult to predict because they are dependent on other concrete ingredients. Because of high complexity of the relations between workability and concrete compositions, conventional regression analysis could be not sufficient to build an accurate model. In this study, a workability model has been built using artificial neural networks (ANN). In this model, the workability is a function of the content of all concrete ingredients, including cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, and fine aggregate. The effects of water/binder ratio (w/b), fly ash-binder ratio (fa/b), superplasticizer-binder ratio (SP/b), and water content on slump were explored by the trained ANN. This study led to the following conclusions: (1) ANN can build a more accurate workability model than polynomial regression. (2) Although the water content and SP/b were kept constant, a change in w/b and fa/b had a distinct effect on the workability properties. (3) An increasing content of fly ash decreased the workability, while raised the slump upper limit that can be obtained.

RUBBER INCLUSION EFFECTS ON MECHANICAL PROPERTIES OF RUBBER-ADDED COMPOSITE GEOMATERIAL

  • Kim, Yun-Tae;Gang, Hyo-Seb
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.129-134
    • /
    • 2010
  • This paper investigates effects of rubber inclusion on the strength and physical characteristics of rubber.added composite geomaterial (CGM) in which dredged soils, crumb rubber, and bottom ash are reused for recycling. Several series of test specimens were prepared at 5 different percentages of rubber content (i.e. 0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil) and three different percentages of bottom ash content (i.e. 0%, 50% and 100% by weight of the dry dredged soil). The mixed soil specimens were subjected to unconfined compression test and elastic wave test to investigate their unconfined compressive strengths and small strain properties. The values of bulk unit weight of the CGM with bottom ash content of 0% and 100% decrease from 14kN/$m^3$ to 11kN/$m^3$ and 15kN/$m^3$ to 12kN/$m^3$, respectively, as rubber content increases, because the rubber had a specific gravity of 1.13. The test results indicated that the rubber content and bottom ash content were found to influence the strength and stress-strain behavior of CGM. Overall, the unconfined compressive strength, and shear modulus were found to decrease with increasing rubber content. Among the samples tested in this study, those with a lower rubber content exhibited sand-like behavior and a higher shear modulus. Samples with a higher rubber content exhibited rubber-like behavior and a lower shear modulus. The CGM with 100% bottom ash could be used as alternative backfill material better than CGM with 0% bottom ash. The results of elastic wave tests indicate that the higher rubber content, the lower shear modulus (G).

  • PDF

The Properties of Concrete with Reject Ash (리젝트애쉬를 사용한 콘크리트 특성)

  • Baek, Chul-Woo;Kim, Ho-Soo;Park, Cho-Bum;Ryu, Deuk-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.481-484
    • /
    • 2006
  • The purpose of this study is to present the recycling method of reject-ash. The reject-ash, a significant portion of the pulverized fuel ash produced by coal-fired power plants and rejected from the ash classifying process, has remained unused due to its high carbon content and large particle size. This study compared reject-ash with fly-ash by physical properties, the properties of fresh & harden concrete with cement replacement ratio of reject-ash and fly-ash, 0, 5, 10, 15, 20, 25(wt. %). The loss of ignition of the reject-ash is similar to fly-ash and is suited to the KS L 5405. When the replacement ratio of reject-ash is increasing the air content of reject-ash concrete is lowly decreased. The results of the compressive strength measurement of reject-ash tends to decrease by increasing the replacement ratio.

  • PDF

An Experimental Study on the Properties of Mortar Mixing Paper Ash (제지애쉬를 혼입한 모르터의 특성에 관한 실험적 연구)

  • Lee, Si-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.115-121
    • /
    • 2002
  • The purpose of this study is investigating characteristics of paper-ash mortar according to partial replacement of fine aggregate by Paper-ash. For this purpose, selected test variables were mixing ratio with two levels of mortar(1:2, 1:3), and 3 types of paper-ash(A, B, C), and paper-ash content with four levels(5%,, 10%, 15%, 20%). As a result of this study, in all mixes with partial replacement of fine aggregate by Paper-ash generally Produced Paper-ash mortar with decreased compressive strength at ail age as compared to ordinary mixes. The mixing rate 1:2 was the higher increasing rate of strength than the mixing rate 1:3. The flow value and unit weight of paper-ash mortar were decreased with increasing of the paper-ash content. And the thermal conductivity of the thermal conductivity of the paper-ash mortar was lower than normal mixing without paper-ash.

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

Engineering Properties of Flowable Composite Soil with Waste Tire and Bottom Ash (폐타이어-저회가 혼합된 유동성 복합지반재료의 공학적 특성)

  • Kim, Yun-Tae;Kang, Hyo-Sub
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.52-58
    • /
    • 2010
  • This study investigated the engineering properties of waste tire powder-bottom ash added composite soil, which was developed to recycle dredged soil, bottom ash, and waste tire powder. Test specimens were prepared using 5 different percentages of waste tire powder content(0%, 25%, 50%, 75%, and 100% by weight of the dry dredged soil), three different percentages of bottom ash content (0%, 50%, and 100% by weight of the dry dredged soil), and three different particle sizes of waste tire powder (0.1~2 mm, 0.9~5 mm, and 2~10 mm). Several series of unconfined compression tests, direct shear tests, and flow tests were conducted. The experimental results indicated that the waste tire powder content, particle size of waste tire powder, and bottom ash content influenced the strength and stress-strain behavior of the composite soil. The flow value increased with an increase in water content, but decreased with an increase in waste tire powder content.

Fresh Properties and Strength Development of High Volume Fly Ash Concrete (많은 양의 플라이애쉬를 혼입한 콘크리트의 굳기전 특성 및 강도 발현)

  • 이진용;최수홍;강석화;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10c
    • /
    • pp.99-104
    • /
    • 1998
  • A study is carried out to investigate the characteristics of concrete various level(0~60%) of fly ash. These results indicate that compressive strength of fly ash concrete seems to be slightly higher than that of ordinary concrete between 7 and 28 days, thereafter the strength of fly ash concrete is significantly higher. In fresh properties of the fly ash concrete, the loss of slump and air content with time up to 120 minutes is lower, but the setting time is increased with increasing fly ash content.

  • PDF