• 제목/요약/키워드: Asexual spores

검색결과 20건 처리시간 0.019초

Microscopic Examination of the Suppressive Action of Antifungal Substances from Pseudomonas aeruginosa on Asexual Sporulation of Fungi

  • Kwon S. Yoon;Bu Y. Min;Park, Hyoung T.;Lee, Jong K.;Kim, Kun W.
    • Journal of Microbiology
    • /
    • 제37권1호
    • /
    • pp.27-34
    • /
    • 1999
  • Two fractions with unusual antifungal activity that suppress asexual sporulation of several fungi were obtained from culture filtrate of Pseudomonas aeruginosa and were partially purified through the repeated silicagel flash column chromatographies. The sporulation-suppressive actions of these fractions in Aspergillus nidulans, Rhizopus stolonifer, and Coprinus cinereus, were analyzed by light and electron microscopes. The germination ability of the spores produced in the presence of these fractions were also checked to determine the persistent effects of these antifungal substances on the next generation. Light microscopic observation of developing sporangia of R. stolonifer grown in the presence of both fractions revealed that the significant number of sporangia failed to reach maturity, and frequently, uncontrolled growths of hyphae and rhizoids from the sporangiophores were found. In A. nidulans addition of these fractions appeared to cause different classes of morphological abnormality in conidia development, which included aborted formation of conidiogenous cells from the apex of conidiophores and enhanced hyphal growths either at the tip or middle of the conidiophores. Germination abilities of spores obtained from the cultures grown in the presence of antifungal fractions were 40∼60% in Aspergillus, 50∼80% in Coprinus (thallic spores), and 30∼40% in Rhizopus compared to those of normal spores.

  • PDF

Functions of PUF Family RNA-Binding Proteins in Aspergillus nidulans

  • Son, Sung-Hun;Jang, Seo-Yeong;Park, Hee-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.676-685
    • /
    • 2021
  • RNA-binding proteins are involved in RNA metabolism and posttranscriptional regulation of various fundamental biological processes. The PUF family of RNA-binding proteins is highly conserved in eukaryotes, and its members regulate gene expression, mitochondrial biogenesis, and RNA processing. However, their biological functions in Aspergillus species remain mostly unknown in filamentous fungi. Here we have characterized the puf genes in the model organism Aspergillus nidulans. We generated deletion mutant strains for the five putative puf genes present in the A. nidulans genome and investigated their developmental phenotypes. Deletion of pufA or pufE affected fungal growth and asexual development. pufA mutants exhibited decreased production of asexual spores and reduced mRNA expression of genes regulating asexual development. The pufE deletion reduced colony growth, increased formation of asexual spores, and delayed production of sexual fruiting bodies. In addition, the absence of pufE reduced both sterigmatocystin production and the mRNA levels of genes in the sterigmatocystin cluster. Finally, pufE deletion mutants showed reduced trehalose production and lower resistance to thermal stress. Overall, these results demonstrate that PufA and PufE play roles in the development and sterigmatocystin metabolism in A. nidulans.

Electron and Light Microscopic Studies on the Development of Oidia from Somatic Mycelium of Coprinus cinereus

  • Yoon, Kwon-S.
    • Mycobiology
    • /
    • 제32권4호
    • /
    • pp.164-169
    • /
    • 2004
  • Development of oidia, a type of thallic spores from monokaryotic mycelium of Coprinus cinereus was examined with electron microscope and light microscopes. Oidia formation in this fungus is unique in its mode of formation compared with other types of asexual sporogenesis. Oidiogenesis in C. cinereus is carried out in three steps: 1) Formation of oidiophore from the parent mycelium, 2) Formation of initials of oidial cells from swollen oidiophore, 3) Segmentation and detachment of mature oidial cell. Oidiophores appear to spring out singly as a swollen hyphal branches from the normal foot hyphae or sometimes coiled hypha. From the oidiophore, oidial branches sprout out forming a group of $2{\sim}6$, most often 4 oidial cells and each oidial cell undergoes a single mitosis resulting in 2 oidia. One of the sibling oidial cells in a group is frequently transformed into a new oidiophore, thus oidiogenic structures are tandemly produced at the several different levels.

감나무 둥근무늬낙엽병균 Mycosphaerella nawae의 불완전 세대 동정 (Identification of the Imperfect Stage of Mycosphaerella nawae Causing Circular Leaf Spot of Persimmon in Korea)

  • 권진혁;강수웅;박창석;김희규
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.397-401
    • /
    • 1998
  • Asexual spores of Mycosphaerella nawae were profusely produced on PDA after a prolonged incubation at $25^{\circ}C$ for 90 days. When persimmon trees were artificially inoculated by the conidial suspension, typical symptoms of circular leaf spot of persimmon appeared on the leaves two month later. The imperfect stag of the fungus was identified as Ramularia sp. based on following morphological characteristics examined under a light microscope and a scanning electron microscope. Conidia were mostly ellipsoid, but occasionally cylindrical, elongated oval, taro, peanut or gourd shapes and measured as 12.2~32.6$\times$6.1~10.2 ${\mu}{\textrm}{m}$. erect, hyaline, colorless-light brown. Conidia were formed solitarily or in chains on a medium and infected leaves. Conidiophore was erect, hyaline, colorless-light brown. and the size was 20.4~102.0$\times$3.1~10.2 ${\mu}{\textrm}{m}$, respectively. In this paper, we firstly demonstratrated that asexual spores of M. nawae induced persimmon circular leaf spot in nature as well as sexual spores of the fungus. Therefore, it is hypothesized that the imperfect stage of the fungus plays an important role in nature for epidemics as secondary inoculum.

  • PDF

각종 탄소원이 $velA^+$ 및 velA1 Aspergillus nidulans의 분화에 미치는 영향 (Effect of Various Carbon Sources on the Development of Aspergillus nidulans with $velA^+$ or velA1 allele)

  • 한동민;한유정;채건상;장광엽;이영훈
    • 한국균학회지
    • /
    • 제22권4호
    • /
    • pp.332-337
    • /
    • 1994
  • Under standard condition (Han, et al., 1990: glucose 1%-nitrate 0.1% minimal medium, 30 ml in 9 cm plate, $10^6$ cells of inoculum per plate), wild type of Aspergillus nidulans developed both sexual and asexual organs in ballance, while velA1 mutant developed asexual ones preferentially. Increase of glucose concentration did not significantly affect the asexual sporulation. However, development of sexual organs were largely affected. It was greatly enhanced when favorable nitrogen source, for example, casein hydrolysate was added, which is contrary to the case of Neurospora or Saccharomyces where limitation of N source induces sexual development. On most of moderate C sources asexual development in $velA^+$ strain was largely inhibited except acetate on which only asexual spores were produced, while that in velA1 mutant strain was not affected. Lactose promoted the sexual development even in velA1 mutant indicating that lactose itself or its metabolic intermediate may induce sexual development independent of allelic state of velA gene. On other moderate favorable C sources, glycerol, galactose and ethanol, asexual development was largely inhibited in $velA^+$ strain but not in velA1 mutant strain. Sexual organs were, however, never produced on acetate. These results suggested that asexual development of wild type is largely dependent on C sources and the velA gene is involved in the repression of asexual development in not-enough-grown (non-competent) thalli resulting in preferential progression of sexual development.

  • PDF

Microcyle Conidiation in Filamentous Fungi

  • Jung, Boknam;Kim, Soyeon;Lee, Jungkwan
    • Mycobiology
    • /
    • 제42권1호
    • /
    • pp.1-5
    • /
    • 2014
  • The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation.

Conserved Roles of MonA in Fungal Growth and Development in Aspergillus Species

  • Son, Ye-Eun;Park, Hee-Soo
    • Mycobiology
    • /
    • 제47권4호
    • /
    • pp.457-465
    • /
    • 2019
  • MonA is a subunit of a guanine nucleotide exchange factor that is important for vacuole passing and autophagy processes in eukaryotes. In this study, we characterized the function of MonA, an orthologue of Saccharomyces cerevisiae Mon1, in the model fungus Aspergillus nidulans and a toxigenic fungus A. flavus. In A. nidulans, the absence of AnimonA led to decreased fungal growth, reduced asexual reproduction, and defective cleistothecia production. In addition, AnimonA deletion mutants exhibited decreased spore viability, had reduced trehalose contents in conidia, and were sensitive to thermal stress. In A. flavus, deletion of AflmonA caused decreased fungal growth and defective production of asexual spores and sclerotia structures. Moreover, the absence of monA affected vacuole morphology in both species. Taken together, these results indicate that MonA plays conserved roles in controlling fungal growth, development and vacuole morphology in A. nidulans and A. flavus.

The Forkhead Gene fkhB is Necessary for Proper Development in Aspergillus nidulans

  • Seo-Yeong Jang;Ye-Eun Son;Dong-Soon Oh;Kap-Hoon Han;Jae-Hyuk Yu;Hee-Soo Park
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1420-1427
    • /
    • 2023
  • The forkhead domain genes are important for development and morphogenesis in fungi. Six forkhead genes fkhA-fkhF have been found in the genome of the model filamentous Ascomycete Aspergillus nidulans. To identify the fkh gene(s) associated with fungal development, we examined mRNA levels of these six genes and found that the level of fkhB and fkhD mRNA was significantly elevated during asexual development and in conidia. To investigate the roles of FkhB and FkhD, we generated fkhB and fkhD deletion mutants and complemented strains and investigated their phenotypes. The deletion of fkhB, but not fkhD, affected fungal growth and both sexual and asexual development. The fkhB deletion mutant exhibited decreased colony size with distinctly pigmented (reddish) asexual spores and a significantly lower number of conidia compared with these features in the wild type (WT), although the level of sterigmatocystin was unaffected by the absence of fkhB. Furthermore, the fkhB deletion mutant produced sexual fruiting bodies (cleistothecia) smaller than those of WT, implying that the fkhB gene is involved in both asexual and sexual development. In addition, fkhB deletion reduced fungal tolerance to heat stress and decreased trehalose accumulation in conidia. Overall, these results suggest that fkhB plays a key role in proper fungal growth, development, and conidial stress tolerance in A. nidulans.

사상균인 Aspergillus nidulans의 무성포자 발아와 당의 역할 (Role of Sugars in Early Stage of Spore Germination in Filamentous Fungi, Aspergillus nidulans)

  • 정광희;김재원
    • 한국균학회지
    • /
    • 제46권4호
    • /
    • pp.511-518
    • /
    • 2018
  • Aspergillus nidulans와 Botrytis cinerea와 같은 사상균들은 당과 같은 영양분이 존재하지 않은 조건에서는 발아하지 않는다. 본 연구에서는 A. nidulans의 포자에 당을 인식하는 기구가 존재할 것이라는 증거를 제시하였다. A. nidulans의 포자에 증류수를 가하였을 때에는 발아가 관찰되지 않는 반면에 5%의 글루코오스를 가해 주었을 때에는 98%이상의 포자가 발아하였다. 뿐만 아니라 프록토오스, 설탕, 녹말과 같은 단당류, 이당류, 다당류를 가해 주어도 유사한 결과를 관찰할 수 있었다. 특이한 것은L-형의 아라비노오스를 가해 준 포자는 발아관을 형성하였으나D-형의 아라비노오스를 가해주면 증류수를 가해주었을 때와 같이 발아관을 형성하지 못 하였다. 포자를 트립신으로 처리한 후에 글루코오스를 가해주면 발아율이 25%롤 감소하였다. 포자 표면에 존재하는 단백질을 용출하여 분리한 후 MALDI-TOF 질량분석기로 단백질을 동정한 결과 동정된 10종의 단백질 중 8종의 단백질은 당의 대사와 관련된 효소들 임을 확인하였다.