Formation of asbestos bodies in various organs of mouse in course of time after intraperitoneal injection of three types of asbestoses was studied. Asbestos bodies as well as asbestos fibers were found both in intrapleural organs such as lung and heart and intraperitoneal organs after intraperitoneal injection of asbestos fiber this suggested the possibility that asbestos fiber could migrate to the whole body. When asbestos was injected intrapleurally asbestos fiber was found in the lung 15 days after injection but asbestos body was not found till 30 days after injection. The process of asbestos body formation was described.
Objectives : To obtain reference values for the pulmonary asbestos and non-asbestos fiber contents of residents in Korea and to compare them with similar results from Japan. Methods : The autopsied lung specimens from 22 deceased people (20 males and 2 females) in Pohang, without any known occupational history of asbestos exposure, were analyzed for incidence of asbestos and non-asbestos fibers by transmission electron microscopy with energy dispersive X-ray analysis after using low temperature ashing procedures. Results : Chrysotite fiber (46.2%) was the major fiber type found in the lungs of the subjects. The asbestos fiber concentrations found in males and females were $0.09\times10^6$ fiberss(g of dry lungs) and $0.30\times10^6$ fibers/(g of dry lungs), respectively, showing a geometric mean concentration $0.09\times10^6$ fibers/(g of dry lung tissue), due to the predominance of males in the sample. The non-asbestos fiber contents in males and females were $4.61\times10^6$ fibers/(g of dry lungs) and $17.79\times10^6$ fibers/(g of dry lungs), respectively, with a geometric mean concentration $5.21\times10^6$ fibers/(g of dry lung tissue). Conclusions : Residents in Pohang had significantly lower levels of both asbestos and non-asbestos fibers than urban residents in Korea. Furthermore, Koreans had significantly lower levels of both asbestos and non-asbestos fibers than Japanese.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.23
no.2
/
pp.123-136
/
2013
Objectives: This paper was prepapred to report airborne asbestos fiber concentrations in asbestos textile, brake-lining, commutator, and building materials manufacturing industries, and some other asbestos related industries in Korea from 1994 to 2006. Methods: Airborne asbestos data that have been sampled and analyzed in the above industries during 1994-2006 were collected. These data were reviewed to scrutinize the qualified data based on the records such as sampling and analyzed method and quality control procedures. All asbestos data were generated using the National Institute for Occupational Safety & Health (NIOSH) Method 7400. Results: Average concentration of asbestos fiber was 2.14 fibers/cc(0.02-15.6 fibers/cc) in the asbestos textile industry, 0.26 fibers/cc(0.01-1.01 fibers/cc) in the building-materials industry, 0.15 fibers/cc(0.01-0.93 fibers/cc) in the brake-lining manufacturing industry, and 0.14 fibers/cc(0.03-1.36 fibers/cc) in the commutator producing industry. For these industries, the percentage of samples of which asbestos fiber concentrations above the limit of exposure(0.1 fibers/cc) was 97.6% in the asbestos textile industry, 62.3% in the building-materials industry, 53.5% in the brake-lining manufacturing industry, and 34.3% in the commutator producing industry. Asbestos fiber concentration was below the limit of exposure in the gasket producing, petrochemistry, musical instrument producing industries, and the brake-lining exchange operations. Conclusions: Airborne asbestos fiber level in the asbestos textile, brake-lining producing, commutator and building-material producing industries was above the limit of exposure, but in the gasket producing, petrochemistry, musical instrument producing industries and the brake-lining exchange operations were below the limit of exposure.
Ham, Seung hon;Hwang, Sung Ho;Yoon, Chungsik;Park, Donguk
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.19
no.3
/
pp.213-232
/
2009
This document was prepared to review and summarize the analytical methods for airborne and bulk asbestos. Basic principles, shortcomings and advantages for asbestos analytical instruments using phase contrast microscopy(PCM), polarized light microscopy(PLM), X-ray diffractometer (XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM) were reviewed. Both PCM and PLM are principal instrument for airborne and bulk asbestos analysis, respectively. If needed, analytical electron microscopy is employed to confirm asbestos identification. PCM is used originally for workplace airborne asbestos fiber and its application has been expanded to measure airborne fiber. Shortcoming of PCM is that it cannot differentiate true asbestos from non asbestos fiber form and its low resolution limit ($0.2{\sim}0.25{\mu}m$). The measurement of airborne asbestos fiber can be performed by EPA's Asbestos Hazard Emergency Response Act (AHERA) method, World Health Organization (WHO) method, International Standard Organization (ISO) 10312 method, Japan's Environmental Asbestos Monitoring method, and Standard method of Indoor Air Quality of Korea. The measurement of airborne asbestos fiber in workplace can be performed by National Institute for Occupational Safety and Health (NIOSH) 7400 method, NIOSH 7402 method, Occupational Safety and Health Administration (OSHA) ID-160 method, UK's Health and Safety Executive(HSE) Methods for the determination of hazardous substances (MDHS) 39/4 method and Korea Occupational Safety and Health Agency (KOSHA) CODE-A-1-2004 method of Korea. To analyze the bulk asbestos, stereo microscope (SM) and PLM is required by EPA -600/R-93/116 method. Most bulk asbestos can be identified by SM and PLM but one limitation of PLM is that it can not see very thin fiber (i.e., < $0.25{\mu}m$). Bulk asbestos analytical methods, including EPA-600/M4-82-020, EPA-600/R-93/116, OSHA ID-191, Laboratory approval program of New York were reviewed. Also, analytical methods for asbestos in soil, dust, water were briefly discussed. Analytical electron microscope, a transmission electron microscope equipped with selected area electron diffraction (SAED) and energy dispersive X-ray analyser(EDXA), has been known to be better to identify asbestiform than scanning electron microscope(SEM). Though there is no standard SEM procedures, SEM is known to be more suitable to analyze long, thin fiber and more cost-effective. Field emission scanning electron microscope (FE-SEM) imaging protocol was developed to identify asbestos fiber. Although many asbestos analytical methods are available, there is no method that can be applied to all type of samples. In order to detect asbestos with confidence, all advantages and disadvantages of each instrument and method for given sample should be considered.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.27
no.3
/
pp.245-256
/
2017
Objectives: The present study is aimed at performing real-time measurement of fibrous materials using an F-1 fiber monitor, investigating the correlations between the measurements and environmental conditions, and assessing the feasibility of the use of the monitor in actual exposure assessments based on the accuracy and reliability of the device. Methods: Asbestos specimens with a fixed asbestos content were dispersed in a chamber and collected with a particle measuring test device. Measurements obtained by the existing PCM method, and with the F-1 fiber monitor were compared. In addition, concentrations of asbestos fibers obtained by the PCM method, the TEM method, and the F-1 fiber monitor were compared with that of specific ABS scenarios in NOA regions. Correlations of asbestos contents in soil and weather conditions with each method of measurement were analyzed. Results: Laboratory results showed that levels of asbestos fibers measured with each method increased as fiber contents in soil increased. In the accuracy and reproducibility assessment, no significant differences were found between the different methods of measurement. On-site assessment results showed positive correlations among the methods, and these correlations were less significant compared with what was shown by the laboratory results. Levels of asbestos fibers increased as asbestos contents in soil increased, and as temperature increased. Levels of asbestos fibers decreased as humidity increased, and wind speed did not significantly affect the extent to which asbestos fibers were scattered. Conclusions: While it would be premature to replace existing methods with the use of F-1 fiber monitors in real sites based on the results of this study, the monitor may be useful in the screening of the sites, which assesses hazard levels in different regions. Replacement of existing methods with the use of F-1 fiber monitors may be possible after the limitations identified in this study are overcome, and additional assessment data are obtained and reviewed under different conditions to confirm the reliability of the monitor in future research. Obtained assessment results may be used as basic data for the assessment of asbestos hazard in NOA regions.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.22
no.2
/
pp.119-127
/
2012
Objectives: The aim of this study is to identify concentration characteristics of indoor and outdoor airborne total fiber particles and asbestos in Gyeongnam Provinces. Methods: This study investigated concentration characteristics of indoor fiber particles from 748 schools and 38 public facilities as well as outdoor particles from 11 sites through PCM (phase contrast microscope). SEM/EDX (scanning electron microscope/energy dispersive using X-ray analysis) was used to obtain physicochemical information of asbestos fiber particles. The study identified asbestos rate in the 15 samples from indoor and outdoor airborne total fiber particles. Results: 1. The average indoor airborne concentrations of total fiber particles were $0.0011{\pm}0007$ f/cc in schools and $0.0015{\pm}0007$ f/cc in public facilities by PCM. Over 90% of the fiber particles were identified as single fibers. 2. The average outdoor airborne concentrations of total fiber particles were $0.0007{\pm}0002$ f/cc, and they were lower than those of indoor airborne concentrations. 3. The results showed that the form of asbestiform was diverse as skein of thread like form and long needle, which was relatively narrower than that of glass fiber and rock wool. 4. The results of SEM/EDX analysis of 15 areas where total fiber particle was relatively high showed that the form was rather similar to that of asbestos, but chemical composition was proven to be non-asbestos. Conclusions: The concentration of indoor and outdoor airborne total fiber particles of Gyeongnam Provinces satisfied the IAQ (Indoor air quality) level of 0.01 f/cc and asbestos was not found in most of the samples by SEM/EDX.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.23
no.3
/
pp.196-204
/
2013
Objectives: The purpose of this study is to analyze the number and influence factors of asbestos fibers in the air of farmhouses with asbestos cement slate roofing, as well as in rainwater per unit area of the asbestos cement slate roofing. Methods: At a distance of 1 m from the end of asbestos cement slate roofing in 20 farmhouses, the asbestos fiber in the air was collected three times on a clear day downwind from the prevailing wind. Rainwater falling from the slate roofing was collected four times with a 1.05-m rainwater pipe on a rainy day at the 20 farmhouses, filtered with a MCE filter, and analyzed with a phase contrast microscope. Results: The geometric mean of the number of asbestos fibers in the air of farmhouses with slate roofing was 0.11 fiber/L, and no samples exceeded the recommended standard of 10 fiber/L. As a result of multiple regression analysis, a factor which gave a significant influence to the asbestos fiber content in the air was the gross area of slate roofing at the target farmhouses. The number of asbestos fibers included in rainwater collected per 1 m2 of slate roofing was 1,753 fiber/$L{\cdot}m2$. As a result of multiple regression analysis, the number of asbestos fibers contained in rainwater per 1 m2 of slate showed a significantly higher tendency as the year of slate roofing installation at the target farmhouses receded. Conclusions: It was confirmed for the first time in Korea that asbestos from asbestos cement slate roofing scatters into the air.
This study was investigated the characteristics of indoor air concentration of fiber particles in 30 public facilities and 245 schools by PCM (phase contrast microscopy). Also SEM/EDX (scanning electron microscope / energy dispersive using X-ray analysis) was used to obtain physicochemical information of asbestos fiber and to classify asbestos and non-asbestos of fiber particles. The airborne concentrations of fiber particles were $0.0009\pm0.0009$ counts/mL in public facilities and $0.0012\pm0.0006$ counts/mL in schools by PCM. All the samples were satisfied with the IAQ (indoor air quality) level of 0.01 counts/mL. In classification of 4 type shapes, over 80% of the fiber particles were identified as single fiber type. And this study analysed airborne fiber particles in 4 sites for identifying asbestos of by SEM/EDX. The asbestos fibers in most samples could not be found.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.5
no.2
/
pp.137-146
/
1995
Twenty(20) large commercial buildings located in Seoul with friable sprayed-on surface insulation material on ceilings were investigated for asbestos content in bulk material by polarized light microscopy and for airborne fiber concentrations in buildings by phase contrast microscopy. In addition, such building-related variables as building age, numbers of traffic, airflow, surface conditions of the ceiling, temperature, and humidity were studied for any correlation with airborne fiber concentrations. The results were as follows: 1. Chrysotile asbestos was found in two bulk samples with 3-5% content and with <1%in one sample out of total 20 bulk samples collected. Glass fiber and mineral wool were the two major constituents of the bulk samples. 2. The ceiling surfaces were very friable in 16 buildings and were relatively hard in 4 buildings. The friability of the surface material was dependent upon the type and the amount of binder that had been mixed with the sprayed-on surface material. 3. Airborne fiber concentrations were log-normally distributed and the geometric mean(geometric standard deviation) fiber concentrations in the underground parking lots, inside buildings, and outdoor ambient air were 0.0063(1.97)f/cc, 0.0068(2.29)f/cc, and 0.0033(2.36)f/cc, respectively. 4. No significant relationship of airborne fiber concentrations and all building-related variables studied except humidity was found. The results of this study suggest that the sprayed-on surface insulation material found in some commercial buildings may possibly be contaminated with asbestos. Since most of the ceiling surfaces surveyed were very friable and poorly maintained and the airborne fiber concentrations were relatively high, there is a possibility of asbestos fiber contamination in these buildings, particularly at those buildings with asbestos-contaminated surface material. Since poorly maintained surface conditions were thought to be a source of high airborne fiber concentrations, there is a urgent need of a systematic operation and maintenance program. Further study of non-occupational asbestos exposure in general population utilizing advanced analytical technique such as transmission electron microscopy is highly recommended.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.30
no.4
/
pp.405-411
/
2020
Objectives: The objectives of this study were to investigate whether airborne fibers were released to the outside air from the asbestos removal area in buildings, and to confirm the existence of asbestos fibers in samples using transmission electron microscopy(TEM). Methods: A total of 1,295 samples was collected from inside and outside 155 asbestos removal areas. To investigate the release of asbestos fibers from the removal area, samples were collected at three locations, such as an entrance to change room, an exit of negative pressure unit(NPU) and perimeter areas. Samples were also collected in the removal area prior to and after removal activity. All samples were analyzed by phase contrast microscopy(PCM) and one-tenth of the samples was analyzed using TEM to discriminate asbestos fibers. Results: During the asbestos removal activity, 27(4.1%) of 662 samples collected outside the removal area showed airborne fiber concentrations equal to or in excess of 0.01 f/cc, the permissible emission standard of the Korean Ministry of Environment. Further, 111 samples were analyzed using TEM. The distribution of asbestos fiber concentrations was log-normal. It was found that 51 of 111 samples(46%) contained asbestos fibers. Conclusions: There is a potential risk of asbestos exposure among neighbors and the public outside the asbestos removal areas. It is recommended that the asbestos removal work be conducted strictly following the specifications required by government and/or professional organizations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.