• 제목/요약/키워드: Asbestos

검색결과 357건 처리시간 0.024초

국내 석면 고형시료 중 석면의 종류 및 함유량에 관한 연구 (A Study on Types and Contents of Asbestos in Bulk Samples)

  • 최호춘;안선희;홍좌령;전봉환;이용필;박정일
    • 한국산업보건학회지
    • /
    • 제21권4호
    • /
    • pp.201-208
    • /
    • 2011
  • Objectives: According to the compliance of the asbestos-related regulation, every building has to be inspected for asbestos presence before its abatement work. This study was performed for identifying the types and contents of asbestos in building bulk samples. Materials and Methods: Bulk samples were collected during the asbestos inspection in 2010. We grouped the bulk samples into the regulated asbestos containing materials(RACM), presumed asbestos containing materials(PACM), and construction products. Additionally, the types of asbestos in all bulk samples were identified by polarization microscopy(PLM). Results: The RACMs were from building, house, pipe and facility. The RACMs were found mainly building (72.1%) and house (93.7%). The contents of chrysotile in building, house and facility were 66.9% (1-90%), 89.7% (2-90%) and 11.0% (2-90%), respectively. PACMs were surfacing material, thermal system insulation (TSI), and miscellaneous material. The miscellaneous materials that showed a high detection rate (79.2%) were ceiling, roofing and wall materials. Among them, the roofing materials had high chrysotile content(9.7%, 2-21%), followed by wall (8.7%, 2-21%) and ceiling (3.4%, 1-17%). In the construction products, asbestos was found mainly in slate (92.6%, 2-21%), including chrysotile. The slate had high asbestos content (9.7%, 2-21%), followed by cement flat board (8.7%, 2-19%) and textile (3.4%, 1-17%) Conclusions: Utilizing these results, it would be contributed to construct a useful ACM database and prevent from asbestos exposure to workers in the asbestos abatement and maintenance works.

석면취급 사업장 근로자의 석면폭로 특성에 관한 연구 (Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry)

  • 백남원;이영환
    • 한국산업보건학회지
    • /
    • 제1권2호
    • /
    • pp.144-153
    • /
    • 1991
  • This study was conducted to evaluate worker exposure to airborne asbestos fibers by industry, and to evaluate polarized-light microscopy for determining airborne asbestos fibers. A total of 11 plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shops were investigated. Rsults of the study are summarized as follows. 1. Worker exposure levels to airborne asbestos fibers were the highest in asbestos textile industry, followed by brake-lining manufacturing, slate manufacturing, and automobile maintenance shops, in order. In asbestos textile industry, large variation of asbestos levels was found by plants. The worst plant indicated airborne fiber concentrations in excess of 10 fibers/cc, however, the best plant showed concentrations within 0.50 fibers/cc. 2. Characterization of airborne fibers by industry indicated that fibers from asbestos textile industry were the longest with the largest aspect ratio. Fibers from automobile maintenance shops were the shortest with the smallest aspect ratio. Based on characteristics of fibers and the highest levels of concentrations, it is concluded that workers in the asbestos textile industry are exposed to the highest risk of producing asbestosis, lung cancer, and mesothelioma. 3. Result s obtained using polarized-light microscopy were $43.7{\pm}12.3%$ of the results obtained using phase contrast microscopy. This may be resulted from the worse resolution of polarized-light microscopy than that of phase contrast microscopy. Based on the results, it is recommended that polarized-light microscopy be used for mainly bulk sample analyses and further study be performed to improve the method for determining airborne samples. However, polarized-light microscopy can be used for determining thick fibers.

  • PDF

석면함유폐기물 취급근로자의 석면노출수준 평가 (Assessment of asbestos exposure level of workers handling waste containing asbestos)

  • 정지연;김은영
    • 한국산업보건학회지
    • /
    • 제28권2호
    • /
    • pp.135-143
    • /
    • 2018
  • Objectives: There have been many studies on exposure assessment of workers at companies using asbestos as a raw material and at sites of the removal of materials containing asbestos. However, no research has been carried out on the asbestos exposure of workers in industries involving asbestos-containing waste, such as workers at collection and transportation service companies, mid-treatment companies(solidification of asbestos-containing waste), and landfill sites. The objective of this study was to assess the asbestos exposure concentrations of workers in industries handling waste containing asbestos. Methods: For this study, we carried out field investigations at 15 companies: seven collection and transportation service companies, three mid-treatment companies, and five final treatment companies(landfill sites). We took both personal and area samples. Results: The range of asbestos exposure levels of workers handing asbestos-containing wastes at collection, mid-treatment, and landfill companies were 0.000 fibers/cc-0.009 fibers/cc, 0.000 fibers/cc-0.038 fibers/cc, and 0.000 fibers/cc-0.024 fibers/cc, respectively. Conclusions: The asbestos exposure levels of workers at mid-treatment companies were higher than those at collection and transportation companies and at final treatment companies. In the case of collection and transportation workers, the possibility of exposure to levels exceeding those found in the present study is not particularly high considering the characteristics of the work. However, in the case of intermediate or final disposal workers, it is considered that there is a possibility of exposure to levels above those found in this study.

석면함유 공공 건축물의 위해성 평가 및 면적 분포 특성 (An Asbestos Risk Assessment and Areal Distribution of Asbestos Containing Materials in Public Buildings)

  • 송수진;장봉기;조봉현;김영지;허은협;이종대;손부순;이종화
    • 한국산업보건학회지
    • /
    • 제26권3호
    • /
    • pp.267-276
    • /
    • 2016
  • Objectives: This study, aims to examine the distribution characteristics of asbestos-containing building materials; risk assessment and area of distribution of asbestos-containing building materials depending on year of construction; building materials; types of building materials; and usage in public buildings in order to create fundamental data for safe management of public buildings. Methods: The asbestos investigation was conducted by an asbestos research institution from March to May 2014, targeting 41 public buildings which were subject to asbestos investigation in South Chungcheong-do Province. With respect to 381 presumed asbestos-containing materials, an investigation was conducted into whether they contained asbestos, asbestos type, content, year of construction, and use in the building were examined, and a risk assessment was performed. Results: Asbestos-containing building materials were used in 35 buildings(85.4%). Among them, 31(88.6%) were public buildings. Asbestos was detected in 73% of 381 suspected asbestos-containing materials, which were mostly ceiling materials (85.2%). The older the buildings, the more they showed a tendency to have a significantly higher risk assessment score. The ratio of average area with asbestos-containing building materials to total floor area was 57.6%, 44.1%, and 17.8% for buildings built in the 1980s, 1990s, and 2000s, respectively. This showed a tendency to be significantly higher with the age of the building. Conclusions: From the results above, it can be concluded that with the age of the buildings, the risk assessment score and the ratio of average area with asbestos-containing building materials to total floor area became significantly higher. Given the concern about the exposure to asbestos of residents and civil petitioners, safety management of older public buildings and measures for dismantling and removal of asbestos-containing building materials should therefore be urgently established.

서울시내 석면함유 건축물 철거 현장 등에서의 효과적인 공기 중 석면농도 측정을 위한 연구 (A Study on the Efficient Measurement of Airborne Asbestos Concentrations at Demolition Sites of Asbestos Containing Buildings, etc. in Seoul)

  • 이진효;이수현;김정연;김지희;정숙녀;김진아;오석률;김익수;신진호;어수미;정권;이진숙
    • 한국산업보건학회지
    • /
    • 제24권2호
    • /
    • pp.113-121
    • /
    • 2014
  • Objectives: This study is intended to seek credible and efficient measurements on airborne asbestos concentrations that allow immediate action by establishing complementary data through comparative analysis with existing PCM and KF-100 method real-time monitoring equipment in working areas in Seoul where asbestos-containing buildings are being demolished, including living environment surroundings. Materials: We measured airborne asbestos concentrations using PCM and KF-100 at research institutes, monitoring networks, subway stations and demolition sites of asbestos-containing buildings. Through this measurement data and KF-100 performance testing, we drew a conversion factor and applied it via KF-100. Finally we verified the relationship between PCM and KF-100 with statistical methods. Results: The airborne asbestos concentrations by PCM for the objects of study were less than the detection limit(7 fiber/$mm^2$) in three (20%) out of 15 samples. The highest concentration was 0.009 f/cc. The airborne asbestos concentrations by PCM in laboratories, monitoring networks, subway stations and demolition sites of asbestos-containing buildings were respectively $0.002{\pm}0.000$ f/cc, $0.004{\pm}0.001$ f/cc, $0.009{\pm}0.001$ f/cc, and $0.002{\pm}0.000$ f/cc. As a result of KF-100 performance testson rooftops, the conversion factor was 0.1958. Applying the conversion factor to KF-100 for laboratories, the airborne asbestos concentrations ratio of the two ways was nearly 1:1.5($R^2$=0.8852). Also,the airborne asbestos concentration ratio of the two ways was nearly 1:1($R^2$=0.9071) for monitoring networks, subway stations, and demolition sites of asbestos-containing buildings. As a result of independent sample t-tests, there was no distinction between airborne asbestos concentrations monitored in the two ways. Conclusions: In working areas where asbestos-containing buildings are being demolished, including living environment surroundings, quickly and accurately monitoring airborne asbestos scattered in the air around the working area is highly important. For this, we believea mutual interface of existing PCM and a real-time monitoring equipment method is possible.

석면 해체.제거 작업에서 사용되는 장비의 성능 기준에 관한 고찰 (A Review on the Performance Criteria of Equipment Required for Asbestos Removal)

  • 이나루
    • 한국산업보건학회지
    • /
    • 제23권3호
    • /
    • pp.212-221
    • /
    • 2013
  • Objectives: Asbestos fibers are accumulated in negative pressure unit (NPU) or vacuum cleaner in asbestos removal. Failure of operation or poor use performance of the NPU or vacuum cleaner causes asbestos fibers to spread in the air. Asbestos contractors should have an NPU fitted with a HEPA , vacuum cleaner, decontamination area, respirators, wetting equipment, and differential pressure manometer to register with the Ministry of Employment and Labor. There should be performance criteria of equipment used in asbestos removal. But there are none such criteria used in asbestos removal. This study was performed to investigate international or national performance criteria of equipment used in asbestos removal. Methods: Regulations, approved code of practice, guidance and national standards of the UK, USA and Korea were reviewed. A survey was done to investigate the requirements for equipment used in asbestos removal in Korea. Results: Air flow of NPUs used in Korea usually covers from$500m^3/h$ to over $3000m^3/h$. Some requirements for NPUs used in Korea were missing compared to the requirements of British standards for NPUs. All NPUs have different missing requirements. The UK also has separate British standard for leak tests for NPUs. Highly hazardous class vacuum cleaners should be used in asbestos removal in the UK. It has national standards on the operation of vacuum cleaners used in asbestos removal. There is only a certification system for less than 2.5kw rated voltage vacuum cleaners for home use in Korea. Powered (-assisted) respirators with mask are recommended in asbestos removal. Type 5 coveralls should be used in asbestos removal in the UK. There are international standards for requirements and leak tests of type 5 coveralls. A manometer for measuring differential pressure is needed in asbestos removal. The manometer's measuring range should cover less than ${\pm}125$ Pa and the gradation of manometer should be less than 2.5 Pa. The definition of decontamination area should be corrected. Installation of airlock and minimum area should be considered in decontamination area. Conclusions: Equipment should be used in asbestos removal proper performance and no leaks. There should be a certification system for equipment used in asbestos removal. This study can help to a certification system for equipment used in asbestos removal in Korea.

QGIS를 활용한 서울시 소유 석면건축물 분포지도 제작에 관한 연구 (A Study on the Distribution Map Construction of Asbestos Buildings Owned by Seoul Using QGIS)

  • 이진효;배일상;하광태;유승성;한규문;어수미;정권;이진숙;구자용
    • 대한환경공학회지
    • /
    • 제38권9호
    • /
    • pp.528-533
    • /
    • 2016
  • 효율적인 석면건축물 유지관리를 위한 방법 중의 하나는 다양한 주제의 석면지도 제작 및 분석을 통해 우선제거대상 건물을 선정하는 것이다. 따라서 본 연구에서는 효율적인 서울시 소유의 석면건축물 관리를 위해 QGIS(Quantum Geographic Information System)를 활용하여 다양한 주제의 석면지도를 제작하였다. 석면환경 노출 및 공기 중 비산문제를 유발시킬 가능성이 높은 석면건축물을 선정하기 위해서 석면건축물 밀집도, 석면면적비율, 인구분포를 고려한 석면건축물 분포도, 우선제거대상 존재유무, 위해성 등급 및 석면건축물 경과년수 등을 종합적으로 고려하여 우선제거대상 석면건축물을 선정하였다. 본 연구와 같이 GIS 등을 활용함으로써 석면건축물 분포현황뿐만 아니라 우선제거대상 건물을 선정하는데 방법의 하나로서 활용될 수 있을 것이다. 향후에는 석면건축물 주변의 생활환경 특성을 고려한 속성값 분류의 다양화 등 보다 정확한 산정기준을 마련할 필요가 있으며, 이를 통해 석면노출에 따른 취약지구 관리에 활용될 수 있을 것으로 기대한다.

슬레이트 지붕의 설치년도와 면적에 따른 공기 및 유출 빗물 중의 석면 농도 (Asbestos Concentrations in Ambient Air and Drained Rainwater from Slate Roofing by Construction Year and Roof Area)

  • 장봉기;류제영;탁현욱;송수진;이종화;이강호;최재호
    • 한국산업보건학회지
    • /
    • 제23권3호
    • /
    • pp.196-204
    • /
    • 2013
  • Objectives: The purpose of this study is to analyze the number and influence factors of asbestos fibers in the air of farmhouses with asbestos cement slate roofing, as well as in rainwater per unit area of the asbestos cement slate roofing. Methods: At a distance of 1 m from the end of asbestos cement slate roofing in 20 farmhouses, the asbestos fiber in the air was collected three times on a clear day downwind from the prevailing wind. Rainwater falling from the slate roofing was collected four times with a 1.05-m rainwater pipe on a rainy day at the 20 farmhouses, filtered with a MCE filter, and analyzed with a phase contrast microscope. Results: The geometric mean of the number of asbestos fibers in the air of farmhouses with slate roofing was 0.11 fiber/L, and no samples exceeded the recommended standard of 10 fiber/L. As a result of multiple regression analysis, a factor which gave a significant influence to the asbestos fiber content in the air was the gross area of slate roofing at the target farmhouses. The number of asbestos fibers included in rainwater collected per 1 m2 of slate roofing was 1,753 fiber/$L{\cdot}m2$. As a result of multiple regression analysis, the number of asbestos fibers contained in rainwater per 1 m2 of slate showed a significantly higher tendency as the year of slate roofing installation at the target farmhouses receded. Conclusions: It was confirmed for the first time in Korea that asbestos from asbestos cement slate roofing scatters into the air.

슬레이트 지붕 노후화에 따른 석면 섬유 방출량 (Releasing of asbestos fibers from the weathered asbestos cement slate roofing)

  • 김현욱;박계영;한진구;한영선;황범구;이준혁
    • 한국산업보건학회지
    • /
    • 제20권2호
    • /
    • pp.88-93
    • /
    • 2010
  • To confirm and quantify asbestos fibers released from the asbestos-cement slate roofs due to weathering, three houses, selected based on the year of built - 60's, 70, and 80's, were investigated. All of them were located in the downtown of Seoul. Rain or snow-melt water was collected from the roof in a 3.5 liter plastic bottle. A known amount of collected water was filtered on the 37 mm membrane filter, ashed in a muffle furnace, and subsequently treated with HCl to remove organic material. The treated remaining was refiltered on a 25mm membrane filter for PLM and PCM analyses. The NIOSH 7400 method was utilized for PCM counting. In addition, SEM/EDX was used to confirm the asbestos types. The results of this study showed that chrysotile fibers were confirmed by PLM in all samples analyzed. A significant amount of asbestos fibers were found in the water samples. The ranges of asbestos fibers counted from the samples collected in the 60's, 70's, and 80's were; 10,406.3~55,575.6 f/L, 5,218.8~38,126.2 f/L, and 2,906.3~7,798.6 f/L, respectively. As anticipated, concentrations of asbestos fibers increased with time of installment of the roofing material. We conclude that weathering can be a significant factor on the release of asbestos fibers from the asbestos cement products. Since asbestos fibers released into environment can be a source of significant health hazard, countermeasures, such as replacement, removal, and encapsulation of weathered asbestos slate, should be initiated immediately.

폐석면의 활용을 위한 저온 용융처리에 대한 실험적 연구 (An experimental study on the low temperature melting treatment of waste asbestos for using)

  • 송태협;김영훈;박지선;이세현
    • 한국건설순환자원학회논문집
    • /
    • 제5권2호
    • /
    • pp.83-90
    • /
    • 2010
  • As a reinforced fabric, asbestos has been utilized as a fire-resistant material as it has a superior flexural stiffness and heat resistance up to $1500^{\circ}C$. However, due to its harmfulness, its use has been prohibited recently and the even the installed asbestos materials are being repaired or supplemented if there is a concern about flying. Asbestos is mainly used for construction panels as a reinforced fabric and coating materials to ensure the fire-resistance of steel frames. Asbestos was used as fire-resistant materials for steel frames until 1991 and then prohibited as Act on Industrial Safety and Health limits the concentration of asbestos in the air. Classified as a designated waste according to Act on Waste Control, asbestos must be buried if there is no possibility of flying (panel-type materials) or cement-solidified and then buried if there is a possibility of flying (spray coating material) In general, it is required that a new waste landfill include a certain landfill facility for designated waste, but in reality there is an absolute storage of landfill facilities for designated waste as they only install facilities of the size required by the regulations. This could result in the 2nd environmental pollution as they cannot process asbestos wastes which will be generated in large volume in the future. This study explores a method that melts asbestos wastes at $700^{\circ}C$ rather than cement-solidifying the waste asbestos from construction sites, especially asbestos-containing spray coating. The study results showed that there was no change in the composition and shape even though asbestos wastes was melted at $1300^{\circ}C$, but there was a change for the specimen which was process in advance for low temperature melting and then melt at $900^{\circ}C$.

  • PDF