• 제목/요약/키워드: Asaoka

검색결과 49건 처리시간 0.022초

연약지반 장기 침하량 예측기법의 신뢰성 평가 (Reliability of Ultimate Settlement Prediction Methods)

  • 우철웅;장병욱;송창섭
    • 한국농공학회지
    • /
    • 제38권6호
    • /
    • pp.35-41
    • /
    • 1996
  • The theory of consolidation has been achieved remarkable development in terms of theory such as finite consolidation theory, two dimensional Rendulic consolidation theory. Though those theories are well defined, the analysis is by no means straightforward, because associated properties are very difficult to determine in the laboratory, Therefore Terzaghi's one dimensional consolidation theory and Barron's cylindrical consolidation theory are still widely used in engineering practice. The theoretical shortcomings of those consolidation theories and uncertainties of associated properties make inevitably some discrepancy between theoretical and field settlements. Field settlement measurement by settlement plate is, therefore, widely used to overcome the discrepancy. Ultimate settlement is one of the most important factor of embankment construction on soft soils. Nowadays the ultimate settlement prediction methods using field settlement data are widely accepted as a helpful tool for field settlement analysis of embankment construction on soft soils. Among the various methods of ultimate settlement prediction, hyperbolic method and Asaoka's method are most commonly used because of their simplicity and ability to give a reasonable estimate of consolidation settlement. In this paper, the reliability of hyperbolic method and Asaoka's method has been examined using analytical methods. It is shown that both hyperbolic method and Asaoka's method are significantly affected by the direction of drainage.

  • PDF

기존 계측 기반 침하 예측 이론식 한계점 도출 및 가중 비선형 회귀분석을 통한 침하 예측 개선방안 제시 (Analysis of the Limitations of the Existing Subsidence Prediction Method Based on the Subsidence Measurement Data and Suggestions for Improvement Method Through Weighted Nonlinear Regression Analysis)

  • 곽태영;홍성호;이주형;우상인
    • 한국지반공학회논문집
    • /
    • 제38권12호
    • /
    • pp.103-112
    • /
    • 2022
  • 본 연구에서는 시간-침하량 계측 데이터를 기반으로 한 기존 침하 예측 이론식을 확인하였다. 기존 계측 기반 침하 예측 이론식 중 쌍곡선법 및 Asaoka법이 정확도가 높게 나타났으며, 이외 방법은 정확도가 낮은 것으로 확인되었다. 이러한 분석 결과를 토대로 기존 침하 예측 방법의 한계점을 도출하였으며, 이러한 한계점을 보완할 수 있는 개선방안으로써 가중 비선형 회귀분석을 통한 침하 예측 방법을 제시하였다.

연약지반에서 최종침하량의 예측방법 (Prediction of Final Settlement on Soft Ground)

  • 임성훈;강예묵;이달원;김지훈
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.449-454
    • /
    • 1998
  • This study was performed of the research for accurate prediction of consolidation settlement at initial consolidation time. In order to analysis the program is developed which is able to analysis behavior of settlement caused by gradual load increment, and simulated consolidation using whole measured settlement data and that from beginning of embankment to end of it. The former result agrees with measured data and the latter it overestimated 13% larger than measured data. It was found the time which takes to be eliminated effect of gradual step load. This method is compared with the results from Asaoka, Hyperbolic and Tan's hyperbolic method respectively Asaoka and Tan's hyperbolic methods we in good agreement with this method. But classical hyperbolic method overestimated about 32%.

  • PDF

침하예측방법들을 이용한 부산신항만 현장 침하 분석 (Analysis of the settlement of Pusan New Port construction site using the settlement prediction methods)

  • 박현일;김하영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.1202-1205
    • /
    • 2009
  • Embankment preloading, in conjunction with prefabricated vertical (PV) drains, was used to accelerate consolidation of marine clays in Pusan New Harbour project. UP to eightteen settlement plates were installed at the ground reclamated site under the embankment fill to monitor the preload performance. This analysis is carried out by five settlement prediction methods including the Asaoka, Hyperbolic, Hoshino, and back-analysis method based on optimization. The field settlement data can be analysed by settlement prediction methods to predict the ultimate settlement and the degree of consolidation of the reclaimed land under charge fill. The authors compared with the analyzed results of the methods.

  • PDF

1차와 2차 침하를 고려한 압밀침하량 예측 (A Consolidation Settlement Prediction Considering Primary and Secondary Consolidation)

  • 이달원;정성규
    • 한국농공학회논문집
    • /
    • 제47권1호
    • /
    • pp.61-68
    • /
    • 2005
  • In this study, it was proposed that an equation for predicting consolidation settlement on soft clay ground, which separate total settlement into primary and secondary consolidation settlement equation. The consolidation settlements by the proposed equation and by the measured settlements from laboratory model test were compared and verified for its application. It was appeared that the proposed equation from the laboratory model test approach to be more realistic comparing to !the result of Terzaghi's equation. From the above application, it was concluded that the final settlement prediction by. the Hyperbolic, Asaoka methods is needed to the initial settlement but the proposed equation could be much applicable in the lacking condition of measured data of the initial period.

지표침하판계측을 통한 연약지반 침하분석 사례연구 (A Case Study on the Analysis of Soft Ground Consolidation by the Measurement of Surface Settlement Plate)

  • 김준석
    • 도시과학
    • /
    • 제9권2호
    • /
    • pp.51-56
    • /
    • 2020
  • The installation of soft ground instruments and the performance of measurement and management of the measurement shall be carried out in order to ensure the safety of the construction work and to improve the quality of the construction work. The purpose of the pressure density deposition calculation is to determine the stability of the foundation ground and the formulation by measuring and calculating the density conditions generated on the soil through the period of neglect after completion of the soil at each stage. In practice, it is judged that the analysis by the hyperbolic method can be applied to the safety side.