• Title/Summary/Keyword: As-welded

Search Result 1,403, Processing Time 0.024 seconds

Investigation of Flow Distribution Characteristics at the Channel Location according to the Header Shape of Welded Plate Heat Exchanger (용접식 판형열교환기 헤더형상에 따른 채널 위치별 유량 분배 특성 고찰)

  • Ham, Jeonggyun;Kim, Eui;An, Sungkook;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • To improve the flow distribution at channel locations in the welded plate heat exchanger with "L"-type inflow, the flow visualization of Model 1 was carried out. Besides, the characteristics of flow distribution was investigated experimentally according to the header shape. The inlet flow rate for each channel location was increased at the side channels but decreased at the central channels. In the case of Model 2, which has a slant structure added to the basic header of Model 1, the unevenness of inlet flow increased by 23% from 0.019 to 0.023 as compared to Model 1. On the other hand, Model 3, which has a baffle structure added to Model 2, showed 0.064 unevenness in inlet flow, which was a 36% reduction one compared to Model 1. To improve the distribution at each channel in the welded plate heat exchanger with "L"-type flow, it is necessary to improve the header external shape for the guide of flow as well as the baffle structure for reduction of vortex flow.

An Experimental Investigation of Limit Loads and Fatigue Properties of Spot Welded Specimens (점용접시편의 극한하중과 피로특성에 관한 실험적 고찰)

  • Lee, Hyeong-Il;Kim, Nam-Ho;Lee, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.38-51
    • /
    • 2000
  • The study on the mechanical behavior of a spot-welded specimen is largely divided into the quasi-static overload failure analysis and the fatigue failure prediction. The main issue in an overload analysis is to examine the critical loads, thereby providing a generalized overload failure criterion. As the welding spot forms a singular geometry of an external crack type, fatigue failure of spot-welded specimens can be evaluated by means of a fracture parameter. In this study, we first present the limit loads of 4 representative types of single spot-welded specimens in terms of the base metal yield strength and specimen geometries. Recasting the load vs. fatigue life relationships experimentally, obtained here, we then predict the fatigue life of spot-weld specimens with a single parameter denoted the equivalent stress intensity factor. This crack driving parameter is demonstrated to successfully describe the effects of specimen geometry and loading type in a comprehensive manner. The suggested fatigue life formula for a single spot weld can play a key, role in the design and assessment of spot-welded panel structures, in that the fatigue strength of multi-spots is eventually determined by the fatigue strength of each single spot.

Fatigue Behavior with Respect to Rolling and Residual Stress in Butt-welded Steel Plate (맞대기 용접 강판재에서 압연 및 잔류응력에 의한 피로거동)

  • Lee Yong-Bok;Oh Byung-Duck;Kim Sung-Yeup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.826-832
    • /
    • 2006
  • For the improvement of safety and endurance in welded steel structure, it is needed to consider welding residual stress distribution and rolling directional characteristics of materials. In this study, it was investigated experimentally about characteristics of fatigue crack propagation according to welding residual stress and rolling in FCAW(flux cored arc welding) butt-jointed steel plates. SS400 steel plates of 3mm thickness were selected and tested for this study. When the angles between tensile loading direction and rolling direction in welded materials are increased from $0^{\circ}\;to\;90^{\circ}$, their fatigue crack propagation rates are increased. These results are same as predicted increments of fatigue crack propagation rate when stress ratio is increased from 0 to 0.5. When the angles of rolling direction and welding direction to tensile loading direction are $0^{\circ}\;and\;90^{\circ}$ respectively, fatigue crack propagation rate in welded material is lowest.

Collapse Analysis of Spot Welded Thin Section Members in a Vehicle Body Structure at Various Impact Velocities

  • Cha, Cheon-Seok;Chung, Jae-Oh;Park, Jae-Woung;Kim, Young-Nam;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.501-510
    • /
    • 2003
  • The spot welded sections of automobiles such as the hat and double hat section members, absorb the most of the energy during the front-end collision. The purpose of this study was to analyze the collapse characteristics of spot welded section members with respect ttl the pitch or spot welds on flanges. through impact experiments and computation for para-closed sections and perfectly closed sections. The hat shaped section members were tested at the impact collapse velocities of 4.72 m/sec, 6.54 m/sec and 7.19 m/sec and double hat shaped section members were tested at the impact collapse velocities of 6.54 m/sec, 7.19 m/sec and 7.27 m/sec. A commercial LS-DYNA3D was used to simulate the collapse behavior of the hat and double hat shaped section members. The validity of the simulation was to be proved by comparing the simulation results and the experimental results.

Stress Analysis of Bonding Interface in the Dissimilar Friction Welded Joints (STS304와 Sl5C 이종마찰압접부의 접합계면 응력해석)

  • 오정국;차용순;성백섭;박창언;김하식;김충환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.65-71
    • /
    • 2002
  • Friction welding has may merits such as energy efficiency, simple processing, etc. but it is difficult to obtain good welding at the welded interfaces and heat affected zone. It is discovered that stress singularity exists at the interferes and heat affected zone. The computer program based on boundary element method is utilized in this study. A mathematical model is implemented based on results from several experiments performed at and around the welded interfaces and heat affected zone of disimilar metals under static and dynamic loadings. This stay is to investigate the characteristics of the deformation and fracture behavior around interfaces for friction welded materials under static tensile load. Also, the stress distribution at the tip of crack is analyzed by using BU based on Kelvin's solution of 2-dimensional binding zone. The results of BEM are identical with those in case of considering interfaces of both heat affected zone. Also, stress singularity at the tip of interfaces appears when the elastic modulus ratio is 1.07.

OPTIMAL PROCESSING AND SYSTEM MANUFACTURING OF A LASER WELDED TUBE FOR AN AUTOMOBILE BUMPER BEAM

  • Suh, J.;Lee, J.H.;Kang, H.S.;Park, K.T.;Kim, J.S.;Lee, M.Y.;Jung, B.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.209-216
    • /
    • 2006
  • A study has been conducted for an optimal processing and an apparatus for manufacturing a laser welded tube for one-body formed bumper beam. The tube dimensions used in calculation were the thickness of 1.4 mm, the diameter of 105.4 mm and the length of 2000 mm. The tube was formed of a cold rolled high strength steel plate(tensile strength of 600 MPa). The two-roll bending method was the optimal tube forming process in comparison with the UO-bending method, the bending method on the press brake, the multi-step continuous roll-forming method and the 3-roll bending method. Monitoring of the welding quality was conducted and the seam tracking along the butt-joint lengthwise to the tube axis was also examined. The longitudinal butt-joint was welded by using a $CO_2$ laser welding machine equipped with a seam tracker and a plasma sensor. The $CO_2$ laser tube welding machine could be used for precise seam tracking and real-time monitoring of the welding quality. As a result, the developed laser welded tube could be used for a one-body formed automobile bumper beam.

Corrosion Characteristics of Welding Zones by Laser and TIG Welding of 304 Stainless Steel

  • Moon, Kyung-Man;Lee, Myung-Hoon
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.294-299
    • /
    • 2010
  • Two types of welding methods were performed on austenitic 304 stainless steel: laser welding and TIG welding. The differences of the corrosion characteristics of the welded zones from the two welding methods were investigated with electrochemical methods, such as measurement of the corrosion potential, polarization curves, cyclic voltammogram, etc. The vickers hardness of all laser-welded zones (WM:Weld Metal, HAZ:Heat Affected Zone, BM:Base Metal) was relatively higher while their corrosion current densities exhibited a comparatively lower value than those which were TIG welded. In particular, the corrosion current density of the TIG-welded HAZ had the highest value among all other welding zones, which suggests that chromium depletion due to the formation of chromium carbide occurs in the HAZ, which is in the sensitization temperature range, thus it can easily be corroded with an active anode. Intergrenular corrosion was also observed at the TIG-welded HAZ and WM zones. Consequently, we can see that corrosion resistance of all austenitic 304 stainless steel welding zones can be improved via the use of laser welding.

A Study on the Mechanical Characteristics of High Tension Bolted Joints with Butt-Welded Joints (횡방향 맞대기 용접부를 가진 고장력볼트 마찰이음부의 역학적 특성에 관한 연구)

  • Chang, Dong Il;Kim, Hak Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.101-113
    • /
    • 1998
  • In this study, we research the influence of butt-welded joints in high tension bolted joints on the static and fatigue strength. As a results, if it's located inside or outside of the friction surface, the fatigue strength decrease, and the decrease of fatigue strength is greater in cases that the butt-welded joints exist outside of the friction surface. But the influence of butt-welded joint on the fatigue strength satisfies category B of the Specifications.

  • PDF

Numerical analysis of the mechanical behavior of welded I beam-to-RHS column connections

  • Rosa, Rosicley J.R.;Neto, Juliano G.R.
    • Coupled systems mechanics
    • /
    • v.8 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Considering the increasing use of tubular profiles in civil construction, this paper highlights the study on the behavior of welded connections between square hollow section column and I-beam, with emphasis on the assessment of the joint stiffness. Firstly, a theoretical analysis of the welded joints has been done focusing on prescriptions of the technical literature for the types of geometries mentioned. Then, a numerical analysis of the proposed joints were performed by the finite element method (FEM) with the software ANSYS 16.0. In this study, two models were evaluated for different parameters, such as the thickness of the cross section of the column and the sizes of cross section of the beams. The first model describes a connection in which one beam is connected to the column in a unique bending plane, while the second model describes a connection of two beams to the column in two bending planes. From the numerical results, the bending moment-rotation ($M-{\varphi}$) curve was plotted in order to determine the resistant bending moment and classify each connection according to its rotational capacity. Furthermore, an equation was established with the aim of estimating the rotational stiffness of welded I beam-to-RHS column connections, which can be used during the structure design. The results show that most of the connections are semi-rigid, highlighting the importance of considering the stiffness of the connections in the structure design.

Low-cycle fatigue evaluation for girth-welded pipes based on the structural strain method considering cyclic material behavior

  • Lee, Jin-Ho;Dong, Pingsha;Kim, Myung-Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.868-880
    • /
    • 2020
  • One of the main concerns in the structural integrity of offshore pipelines is mechanical damage from external loads. Pipelines are exposed to fatigue failure in welded joints due to geometric discontinuity. In addition, fatigue loads such as currents, waves, and platform motions may cause significant plastic deformation and fracture or leakage within a relatively low-cycle regime. The 2007 ASME Div. 2 Code adopts the master S―N curve for the fatigue evaluation of welded joints based on the mesh-insensitive structural stress. An extension to the master S―N curve was introduced to evaluate the low-cycle fatigue strength. This structural strain method uses the tensile properties of the material. However, the monotonic tensile properties have limitations in describing the material behavior above the elastic range because most engineering materials exhibit hardening or softening behavior under cyclic loads. The goal of this study is to extend the cyclic stress-strain behavior to the structural strain method. To this end, structural strain-based procedure was established while considering the cyclic stress-strain behavior and compared to the structural strain method with monotonic tensile properties. Finally, the improved prediction method was validated using fatigue test data from full-scale girth-welded pipes.