• 제목/요약/키워드: As-doped spin-on-glass

Search Result 18, Processing Time 0.027 seconds

Eu-doped LGF Luminescent Down Converter Possible for TiO2 Dye Sensitized Solar Cells

  • Kim, Hyun-Ju;Song, Jae-Sung;Lee, Dong-Yun;Lee, Won-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.89-92
    • /
    • 2004
  • For improving solar efficiencies, down conversion of high-energy photons to visible lights is discussed. The losses due to thermalization of charge carriers generated by the absorption of high-energy photons, can largely be reduced in a solar cell if more than one electron-hole pair can be generated per incident photon. The solar cell was constructed of dye-sensitized anatase-based TiO$_2$, approximately 30nm particle size, 6$\mu\textrm{m}$thickness, and 6${\times}$6$\textrm{mm}^2$ active area, Pt counter electrode and I$_3$$\^$-/I$_2$$\^$-/ electrolyte. After correction for losses due to light reflection and absorption by the conducting glass, the conversion of photons to electric current is practically quantitative in the plateau region of the curves. The incident photon to current conversion efficiency(IPCE) of N3 used as a dye in this work is about 80% at around 590nm and 610nm which is the emission spectrum of Eu doped LGF. The Eu doped LGF powder was prepared by conventional ceramic process, and used as a down converter for DSC after spin coated on the slide glass and fired.

Performance Characteristics of Polymer Photovoltaics using Dimethyl Sulphoxide incorporated PEDOT:PSS Buffer Layer

  • Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Gang, Yong-Su;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.238-239
    • /
    • 2010
  • Dimethyl sulphoxide (DMSO) is one of the widely-used secondary dopants in order to enhance the conductivity of poly(3, 4-ethylenedioxy-thiophene):poly(styrene sulfonate) (PEDOT:PSS) film. In this work, we investigated the effect of DMSO doping in to PEDOT:PSS on the electrical performance of the bulk heterojunction photovoltaics consisting of poly(3-hexylthiophene-2, 5-diyl) and phenyl-C61-butyric acid methyl ester. Correlation between the power conversion efficiency and the mechanism of improving conductivity, surface morphology, and contact properties was examined. The PEDOT:PSS films, which contain different concentration of DMSO, have been prepared and annealed at different annealing temperatures. The mixture of DMSO and PEDOT:PSS was prepared with a ratio of 1%, 5%, 15%, 25%, 35%, 45%, 55% by volume of DMSO, respectively. The DMSO-contained PEDOT:PSS solutions were stirred for 1hr at $40^{\circ}C$, then spin-coated on the ultra-sonicated glass. The spin-coated films were baked for 10min at $65^{\circ}C$, $85^{\circ}C$, and $120^{\circ}C$ in air. In order to investigate the electrical performance, P3HT:PCBM blended film was deposited with thickness of 150nm on DMSO-doped PEDOT:PSS layer. After depositing 100nm of Al, the device was post-annealed for 30min at $120^{\circ}C$ in vacuum. The fabricated cells, in this study, have been characterized by using several techniques such as UV-Visible spectrum, 4-point probe, J-V characteristics, and atomic force microscopy (AFM). The power conversion efficiency (AM 1.5G conditions) was increased from 0.91% to 2.35% by tuning DMSO doping ratio and annealing temperature. It is believed that the improved power conversion efficiency of the photovoltaics is attributed to the increased conductivity, leading to increasing short-circuit current in DMSO-doped PEDOT:PSS layer.

  • PDF

Improved Performance of CdS/CdTe Quantum Dot-Sensitized Solar Cells Incorporating Single-Walled Carbon Nanotubes

  • Shin, Hokyeong;Park, Taehee;Lee, Jongtaek;Lee, Junyoung;Yang, Jonghee;Han, Jin Wook;Yi, Whikun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2895-2900
    • /
    • 2014
  • We fabricated quantum dot-sensitized solar cells (QDSSCs) using cadmium sulfide (CdS) and cadmium telluride (CdTe) quantum dots (QDs) as sensitizers. A spin coated $TiO_2$ nanoparticle (NP) film on tin-doped indium oxide glass and sputtered Au on fluorine-doped tin oxide glass were used as photo-anode and counter electrode, respectively. CdS QDs were deposited onto the mesoporous $TiO_2$ layer by a successive ionic layer adsorption and reaction method. Pre-synthesized CdTe QDs were deposited onto a layer of CdS QDs using a direct adsorption technique. CdS/CdTe QDSSCs had high light harvesting ability compared with CdS or CdTe QDSSCs. QDSSCs incorporating single-walled carbon nanotubes (SWNTs), sprayed onto the substrate before deposition of the next layer or mixed with $TiO_2$ NPs, mostly exhibited enhanced photo cell efficiency compared with the pristine cell. In particular, a maximum rate increase of 24% was obtained with the solar cell containing a $TiO_2$ layer mixed with SWNTs.

Strain induced/enhanced ferromagnetism in $Mn_3Ge_2$thinfilms

  • Dung, Dang Duc;Feng, Wuwei;Thiet, Duong Van;Sin, Yu-Ri-Mi;Jo, Seong-Rae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.135-135
    • /
    • 2010
  • In Mn-Ge equilibrium phase diagram, many Mn-Ge intermetallic phases can be formed with difference structures and magnetic properties. The MnGe has the cubic structure and antiferromagnetic(AFM) with Neel temperature of 197 K. The calculation predicted that the $MnGe_2$ with $Al_2Cu$-type is hard to separate between the paramagnetic(PM) states and the AFM states because this compound displays PM and AFM configuration swith similar energy. Mn-doped Ge showed the FM with Currie temperature of 285 K for bulk samples and 116 K for thin films. In addition, the $Mn_5Ge_3$ compound has hexagonal structure and FM with Curie temperature around 296K. The $Mn_{11}Ge_8$ compound has the orthorhombic structure and Tc is low at 274 K and spin flopping transition is near to 140 K. While the bulk $Mn_3Ge_2$ exhibited tetragonal structure ($a=5.745{\AA}$;$c=13.89{\AA}$) with the FM near to 300K and AFM below 150K. However, amorphous $Mn_3Ge_2$ ($a-Mn_3Ge_2$) was reported to show spin glass behavior with spin-glass transition temperature (Tg) of 53 K. In addition, the transition of crystalline $Mn_3Ge_2$ shifts under high pressure. At the atmospheric pressure, $Mn_3Ge_2$ undergoes the magnetic phase transition from AFM to FM at 158 K. The pressure dependence of the phase transition in $Mn_3Ge_2$ has been determined up to 1 GPa. The transition was found to occur at 1 GPa and 155 K with dT/dP=-0.3K/0.1 GPa. Here report that Ferromagnetic $Mn_3Ge_2$ thin films were successfully grown on GaAs(001) and GaSb(001) substrates using molecular beam epitaxy. Our result revealed that the substrate facilitates to modify magnetic and electrical properties due to tensile/compressive strain effect. The spin-flopping transition around 145 K remained for samples grown on GaSb(001) while it completely disappeared for samples grown on GaAs(001). The antiferromagnetism below 145K changed to ferromagnetism and remained upto 327K. The saturation magnetization was found to be 1.32 and $0.23\;{\mu}B/Mn$ at 5 K for samples grown on GaAs(001) and GaSb(001), respectively.

  • PDF

Physical Properties of Mg0.05Zn0.95O Thin Films Grown by Sol-Gel Method According to Types of Indium Precursors (졸-겔법으로 성장시킨 Mg0.05Zn0.95O 박막의 Indium 전구체의 종류에 따른 물성에 관한 연구)

  • Choi, Hyo Jin;Lee, Min Sang;Kim, Hong Seung;Ahn, Hyung Soo;Jang, Nak Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.4
    • /
    • pp.256-261
    • /
    • 2021
  • Indium-doped Mg0.05Zn0.95O thin films were deposited on glass substrates by a sol-gel method. Three types of indium precursors such as indium chloride, indium acetate, and indium nitrate were used as doping sources. Physical properties of fabricated thin films were analyzed through XRD (x-ray diffraction), UV-vis spectrophotometer, Hall effect measurement, and EDS (energy dispersive x-ray spectroscopy). All In-doped thin films grown in this study exhibited a preferred orientation of (002) with over 80% transmittance. The results showed that the Mg0.05Zn0.95O thin film from indium chloride as the indium precursor has higher crystallinity and transmittance with lower resistivity when compared with those from other indium precursors.

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF

Enhanced Efficiency of Organic Electroluminescence Diode Using PEDOT-PSS/NPD-$C_{60}$ Hole Injection/Transport Layers (PEDOT-PSS/NPD-$C_{60}$ 정공 주입/수송 층이 도입된 유기발광소자의 성능 향상 연구)

  • Park, Kyeong-Nam;Kang, Hak-Su;Senthilkumar, Natarajan;Park, Dae-Won;Choe, Young-Son
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.407-412
    • /
    • 2009
  • Vacuum deposited N,N-di-1-naphthyl-N,N-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) as a hole transporting (HTL) materials in OLEDs was placed on PEDOT-PSS, a hole injection layer (HIL). PEDOT-PSS was spin-coated on to the ITO glass. $C_{60}$-doped NPD-$C_{60}$(10 wt%) film was formed via co-evaporation process and the morphology of NPD-$C_{60}$ films was investigated using XRD and AFM. The J - V, L - V and current efficiency of multi -layered devices were characterized. According to XRD results, the deposited $C_{60}$ thin film was partially crystalline, but NPD-$C_{60}$ film was observed not to be crystalline, which indicates that $C_{60}$ molecules are uniformly dispersed in the NPD film. By using $C_{60}$-doped NPD-$C_{60}$ film as a HTL, the current density and luminance of multi-layered ITO/PEDOT-PSS/NPD-$C_{60}/Alq_3$/LiF/Al device were significantly increased by about 80% and its efficiency was improved by about 25% in this study.

Performance Characteristics of Organic Electroluminescence Diode Using a Carbon Nanotube-Doped Hole Injection Layer (탄소 나노튜브가 도입된 정공 주입층에 의한 유기발광다이오드의 성능 특성 연구)

  • Kang, Hak-Su;Park, Dae-Won;Choe, Youngson
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.418-423
    • /
    • 2009
  • MWCNT(multi-wall carbon nanotube)-doped PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)), used as a HIL(hole injection layer) material in OLEDs(organic light emitting diodes), was spin-coated on to the ITO glass to form PEDOT:PSS-MWCNT nano composite thin film. Morphology and transparency characteristics of nano composite thin films with respect to the loading percent of MWCNT have been investigated using FT-IR, UV-Vis and SEM. Furthermore, ITO/PEDOT:PSS-MWCNT/NPD/$Alq_3$/Al devices were fabricated, and then J-V and L-V characteristics were investigated. Functional group-incorporated MWCNT was prepared by acid treatment and showed good dispersion property in PEDOT:PSS solution. PEDOT:PSS-MWCNT thin films possessed good transparency property. For multi-layered devices, it was shown that as the loading percent of MWCNT increased, the current density increased but the luminance dramatically decreased. It might be conclusively suggested that the enhanced charge mobility by MWCNT could increase the current density but the hole trapping property of MWCNT could dramatically decrease the hole mobility in the current devices.