Browse > Article
http://dx.doi.org/10.4313/JKEM.2021.34.4.256

Physical Properties of Mg0.05Zn0.95O Thin Films Grown by Sol-Gel Method According to Types of Indium Precursors  

Choi, Hyo Jin (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Lee, Min Sang (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Kim, Hong Seung (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Ahn, Hyung Soo (Major of Electronic Material Engineering, Korea Maritime and Ocean University)
Jang, Nak Won (Major of Electrical and Electronics Engineering, Korea Maritime and Ocean University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.34, no.4, 2021 , pp. 256-261 More about this Journal
Abstract
Indium-doped Mg0.05Zn0.95O thin films were deposited on glass substrates by a sol-gel method. Three types of indium precursors such as indium chloride, indium acetate, and indium nitrate were used as doping sources. Physical properties of fabricated thin films were analyzed through XRD (x-ray diffraction), UV-vis spectrophotometer, Hall effect measurement, and EDS (energy dispersive x-ray spectroscopy). All In-doped thin films grown in this study exhibited a preferred orientation of (002) with over 80% transmittance. The results showed that the Mg0.05Zn0.95O thin film from indium chloride as the indium precursor has higher crystallinity and transmittance with lower resistivity when compared with those from other indium precursors.
Keywords
$Mg_{0.05}Zn_{0.95}O$; Indium precursor; Thin film; Sol-gel; Spin-coating;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Zhang, B. R. Jang, C. H. Kim, J. H. Lee, H. S. Kim, N. W. Jang, M. W. Pin, and W. J. Lee, J. Korean Phys. Soc., 62, 1295 (2013). [DOI: https://doi.org/10.3938/jkps.62.1295]   DOI
2 M. Huang, S. Wang, X. Yin, G. Mu, G. Wan, X. Duan, and L. Yi, J. Phys. D: Appl. Phys., 50, 215106 (2017). [DOI: https://doi.org/10.1088/1361-6463/aa6a75]   DOI
3 A. Kaushal and D. Kaur, Sol. Energy Mater. Sol. Cells, 93, 193 (2009). [DOI: https://doi.org/10.1016/j.solmat.2008.09.039]   DOI
4 A. Janotti and C. G. Van de Walle, Rep. Prog. Phys., 72, 126501 (2009). [DOI: https://doi.org/10.1088/0034-4885/72/12/126501]   DOI
5 P. N. Ni, C. X. Shan, B. H. Li, and D. Z. Shen, Appl. Phys. Lett., 104, 032107 (2014). [DOI: https://doi.org/10.1063/1.4862789]   DOI
6 F. J. Klupfel, H. von Wenckstern, and M. Grundmann, Appl. Phys. Lett., 106, 033502 (2015). [DOI: https://doi.org/10.1063/1.4906292]   DOI
7 D. J. Cohen, K. C. Ruthe, and S. A. Barnett, J. Appl. Phys., 96, 459 (2004). [DOI: https://doi.org/10.1063/1.1760239]   DOI
8 S. Alamdari, M. J. Tafreshi, and M. S. Ghamsari, Mater. Lett., 197, 94 (2017). [DOI: https://doi.org/10.1016/j.matlet.2017.03.113]   DOI
9 A. Yeom, H. S. Kim, N. W. Jang, Y. Yoon, and H. S. Ahn, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 214 (2020). [DOI: https://doi.org/10.4313/JKEM.2020.33.3.214]   DOI
10 C. A. Gupta, S. Mangal, and U. P. Singh, Appl. Surf. Sci., 288, 411 (2014). [DOI: https://doi.org/10.1016/j.apsusc.2013.10.048]   DOI
11 M. Ohyama, H. Kouzuka, and T. Yoko, Thin Solid Films, 306, 78 (1997). [DOI: https://doi.org/10.1016/S0040-6090(97)00231-9]   DOI
12 K. G. Saw, N. M. Aznan, F. K. Yam, S. S. Ng, and S. Y. Pung, PLoS One, 10, e0141180 (2015). [DOI: https://doi.org/10.1371/journal.pone.0141180]   DOI
13 S. Benzitouni, M. Zaabat, A. Mahdjoub, A. Benaboud, and B. Boudine, Mater. Sci.-Pol., 36, 427 (2018). [DOI: https://doi.org/10.1515/msp-2018-0037]   DOI