• Title/Summary/Keyword: As-Welded

Search Result 1,407, Processing Time 0.034 seconds

A Study on Estimation of Fatigue Life of Aged Continuous Welded Rail using the Field Test (현장측정을 통한 노후 레일의 피로수명 평가에 관한 연구)

  • Kong, Sun-Yong;Sung, Deok-Yong;Kim, Jun-Hyung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.352-364
    • /
    • 2007
  • It is essential to reduce track maintenance costs and to extend the periodic replacements of continuous welded rails based on accumulated passing tonnage. As recently train load decrease and rail joints wear down less, the periodic replacements of continuous welded rails can be extended. There are many kinds of rail damage like squat, head-check and corrugation. These can be taken nondestructive or naked eye test. So the periodic replacements of continuous welded rails based on accumulated passing tonnage were examine with focusing on a crack of rail bottom of continuous welded rail. Therefore, this study measure dynamic response of track by metro train load, it compute impact coefficient and track spring coefficient for estimating a condition of actual track system. Also, it is converted the measured stress waveform into stress frequency histogram by the rain-flow counting methods, and then the equivalence of stress is calculated. As apply s-n curve of a new welded rail, accumulated fatigue damage ratio of laid rail and remaining service lives is estimated. This study suggest a plan of the periodic replacements of continuous welded rails based on accumulated passing tonnage classified by the types of track system.

  • PDF

Study on Fatigue Strength of Friction Welded S20C and SUS27B (마찰용접(摩擦熔接)된 S20C와 SUS27B의 피로강도(疲勞强度)에 대(對)한 연구(硏究))

  • Dong-Suk,Um;Sung-Won,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.8 no.2
    • /
    • pp.13-24
    • /
    • 1971
  • When friction welded material is actually used for parts of a machine, its fatigue strength is an important problem. Especially, there is no report which deals with mechanical properties of friction welded mild steel(S20C) and stainless steel(SUS27B). In this study are compared the compared the characteristics of such specimens as mild steel, stainless steel and welded material in the S-N diagram. And metallurgical consideration is directed to HAZ. The obtained results in these studies are summarized as follows; 1) The fatigue strength of welded material is slightly less than those of mild steel and stainless steel. 2) In the S-N diagram the knuckle point of welded material has larger number of cycle than that of stainless steel. 3) The fatigue notch factor of welded material is between those of mild steel and stainless steel. 4) mHv is the largest on the weld interface. It is larger before than after fatigue test on the stainless steel side. On the mild steel side it is the way around.

  • PDF

Fatigue Behavior of Friction Welded Material of Domestic Dissimilar Steels - In Case of SM 45C to SUS304 Friction Welded Steel - (國산 異種鋼을 摩擦壓接한 경우의 疲勞擧動)

  • 송삼홍;박명과
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.953-962
    • /
    • 1987
  • Domestic dissimilar structural steels, SM 45 C and SUS304 were friction welded under optimal welding condition and the micro-artificial holes were drilled at SM 45 C base metal, SM 45 C HAZ, welded zone, SUS 304 HAZ, and SUS 304 base metal for fatigue behavior tests. In this study, the fatigue limit and the behavior of micro-crack propagation, crack propagation rate, and its dependency on stress intensity factor under the low stress level and high stress level of bending stress have been investigated. The results obtained are as follows. (1) The fatgiue strength of the portion of SM45C B.M., SM45C HAZ, welded zune, SUS304 HAZ and SUS304 B.M. on notched friction welded specimens are 20 kgf/mm$^{2}$, 32 kgf/mm$^{2}$, 27kgf/mm$^{2}$, 29kgf/mm$^{2}$, and 29kgf/mm$^{2}$, respectively. (2) The fatigue strength of welded zone of unnotched and notched specimens are 32.5kgf/mm$^{2}$, and 27kgf/mm$^{2}$, respectively. (3) Micro-crack initiation in the welded zone, HAZ, and each base metals occurrs simultaneously in front and rear of micro-hole tips in the view of the rotational directions. (4) Fatigue crack propagates more slowly in the welded zone than in another protions of specimen, regardless of the magnitude of the stress level. (5) Fatigue crack propagation rates were plotted as a function of stress intensity range. The value of m in the equation da/dN=C(.DELTA.K)$^{m}$ was found to range from 2.09-2.55 in this study.

Effect of Temperature and Water Assumtion on Strength of Spot Welded Zine Steel Plates (점용접 아연도금판의 강도특성에 대한 온도 및 침수의 영향)

  • Seo, Do-Won;Yoon, Ho-Chel;Choi, Jun-Yong;Lim, Jae-Kyoo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.358-363
    • /
    • 2003
  • Spot welded structure is operated in diverse situation because of temperature, humidity and precipitation. In addition factors of environmental pollution such as acid rain, that courses corrosion, have the tendency to increase, But spot welded structure strength is affected by dampness and environment temperatures. Therefore, it is important to evaluate effect of temperature of spot welded part, In this study, the strength distribution of spot welded plates is evaluated about the environmental temperature of zine coated steel plates and test is conducted with welded part immersed in distilled and synthetic sea water. Specimens are immersed into water for 10, 100, 500 and 1000hours to evaluate the effects of water immersion time on tensile-shear strength under the conditions of -40, 0, 20 and $50^{\circ}C$. Strength is evaluated by tensile-shear test. The conditions of spot welding are 240kgf electrode force, 10KA welding current with 0 and 5mm clearance. From this study, spot welded specimens with clearance have lower tensile-shear strength in the distilled water or synthetic sea water comparing with spot welded specimens without clearance. And they have lower tensile-shear strength under $-40^{\circ}C$ and over $50^{\circ}C$.

  • PDF

Fatigue Assessment of High Strength Steel with Butt Welded Joints for the Root Gap Difference (고강도강 맞대기 용접 시험편의 루트갭 변경에 따른 피로강도 평가)

  • Kim, Ho-Jung;Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.56-61
    • /
    • 2011
  • In this study, a series of fatigue tests was conducted to evaluate fatigue strength for the root gap difference with high strength steel with butt welded joints. A finite element analysis using effective notch stress method was also performed to compare effective notch factors each other with butt welded specimens made by copper backing. The results of fatigue tests were classified according to the root gap difference. Fatigue life of butt welded specimens is presented for determining the root gap of high strength steel with butt welded joints in terms of fatigue strength. Then effective notch stress was applied to interpret fatigue strength of butt welded specimen model which is reflected actual measured dimensions. As a result, fatigue strength of high strength steel with butt welded specimens is increased by root gap gets longer in length.

EVALUATION OF THE FINITE ELEMENT MODELING OF A SPOT WELDED REGION FOR CRASH ANALYSIS

  • Song, J.H.;Huh, H.;Kim, H.G.;Park, S.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.329-336
    • /
    • 2006
  • The resistance spot-welded region in most current finite element crash models is characterized as a rigid beam at the location of the welded spot. The region is modeled to fail with a failure criterion which is a function of the axial and shear load at the rigid beam. The calculation of the load acting on the rigid beam is important to evaluate the failure of the spot-weld. In this paper, numerical simulation is carried out to evaluate the calculation of the load at the rigid beam. At first, the load on the spot-welded region is calculated with the precise finite element model considering the residual stress due to the thermal history during the spot welding procedure. And then, the load is compared with the one obtained from the model used in the crash analysis with respect to the element size, the element shape and the number of imposed constraints. Analysis results demonstrate that the load acting on the spot-welded element is correctly calculated by the change of the element shape around the welded region and the location of welded constrains. The results provide a guideline for an accurate finite element modeling of the spot-welded region in the crash analysis of vehicles.

A Study on Local Distribution of Fracture Toughness for Welded Joints of Steel Structure (구조강(構造鋼) 용접부(鎔接部)의 국부인성분포(局部靭性分布)에 관한 연구(研究))

  • Chang, Dong Il;Young, Hwan Sun;Kim, Dong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.19-25
    • /
    • 1984
  • In the welded structure, the most dengerous section is welded parts and almost fractures of welded structure occur from welded parts. Accordingly, in other to prevents of fracture, it is important seeking the fracture behavior of welded parts. In this study as basic investigation of fracture behavior of welded parts, it is investigated that local distribution of fracture toughness and effect of multipass electrode welding, also effect of release of residual stress were investigated, as the subjected. material, the used steel having fatigue history and unused steel were selected. As the result of this study, it is dear that the base metal of unused steel and heat affected zone and weld metal are different each other in fracture toughness, and it seems clear that the weld metal may will become source of fracture because of it having the most low fracture toughness. Especially, in the case of crack occur in the used steel, it will be the most brittle section in the structure because of it having low fracture toughness then weld metal. It affirmation that, if welded parts has not flaw, the multi pass electrode welding effective to improve of fracture toughness, also release of residual stress is none effective to improve of fracture toughness in this study.

  • PDF

A Study on the Characteristics of Heat Distribution of Welded Joint on the Steel Structure with Thick Plate (厚板 鋼構造物 熔接이음부의 熱分布 特性에 關한 硏究)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.138-144
    • /
    • 1995
  • Recently, as the industrial structure tends to become large, the thickness of structural plate becomes thicker. Therefore, the thicker the plate of welded structure is, the larger the shape of welded joint. The effect of large heat input makes large heat affected zone(HAZ). These bring to complict welding residual stress and to weaken material, which may cause extremely harm to the safety of structures. Nevertheless, welding is design is regulated by the KS, JIS or standard in the resister of shipping such as KR, ABS or LR. However, these rules are based on rather experimental than theoretical. In this study, the computer program of heat conduction, considering un-steady state and quasi-steady state, is developed for optimizing(minimizing) a shape of welded joint. The characteristics of heat on the welded joints with various shapes are clarified by the results of the analyses.

  • PDF

The Influence of Initial Overloads on the Fatigue Life of Spot-welded Tensile-shear Specimens (初期 過荷重이 點熔接 引張剪斷 試驗片의 疲勞擧動에 미치는 影響)

  • 강성수;정원욱
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.60-67
    • /
    • 1995
  • The factors affecting on the fatigue strength of spot_welded specimens have been studied. The influence of initial overloads on the fatigue life of spot_welded tensile_shear specimens is investigated by considering fatigue crack initiation and crack propagation. The change of strain range and the influence of initial overload are correlated on the basis ol strain results. The results of this study are as follows. l) The initial absolute strain range decreased with initial overloads increase, and absolute strain range decreased before transformation of waveform of strain, but increased after transformation of waveform of strain. 2) In case of subsequent point of inflection of offset strain, the increment of this strain decreased with initial overload increase. 3) As initial overloads increase, the deformation behavior of spot welded parts is restricted after overloading.

  • PDF

A Study on the Characteristics of Zr-4 End Cap Welded Joints Using Resistance Upset Welding (저항업셋 용접법을 이용한 Zr-4 End Cap용접부의 특성에 관한 연구)

  • 박철주;김형수;이영호;강원석
    • Journal of Welding and Joining
    • /
    • v.10 no.4
    • /
    • pp.240-249
    • /
    • 1992
  • The objective of this study is to investigate the characteristics of welded joints on the Zircaloy-4 resistance upset welding for HWR(Heavy Water reactor)fuel rods. To estimate the characteristics of welded joints, the various tests were performed on the test coupons systematically with a wide range of each welding parameters in terms of a tensile test, burst test, knoop hardness test and metallography. Major results obtained in this study are as follows: 1. The tube and machined with 120.deg. projection was the reliable weld joint design for the nuclear fuel rod end cap welding. 2. As the weld current and the amount of upset increased linearly with increasing welding main heat input, it could make an estimate of their variation in accordance with the phase shift control. 3. It was found that an increase in squeeze force has an effect on the upset contour of welded joint because the amount of upset were increased by the change of squeeze force.

  • PDF