• Title/Summary/Keyword: As contaminated soil

Search Result 1,165, Processing Time 0.03 seconds

Evaluation of Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus for phytoremediation of Cu and Cd contaminated soil (돼지풀, 단풍잎돼지풀, 소리쟁이를 이용한 중금속오염토양의 식물복원법(phytoremediation)에 관한 연구)

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak;Kim, Kwang-Ho;Chung, Ill-Min
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.262-267
    • /
    • 1998
  • We evaluated Ambrosia artemisiifolia var. elatior, Ambrosia trifida, Rumex crispus which were reported to have good phytoremediatibility in different concentrations of Cu and Cd. Different growth responses were found in different heavy metal concentrations. Good growth rate for A. trifida and A. artemisiifolia var. elatior in Cu and Cd treatments and poor growth for R. crispus in Cd treatment were found. Although growth was retared in all tested weeds up to 200ppm for Cu and 50ppm for Cd, the high amount of heavy metal uptake indicated that these weeds could be used as phytoremediation. The choice of proper plant for bioremediation in different sources of heavy metal pollution seems important. In this regard, A. trifida which showed little variation in Cu accumulation in shoot under different Cu concentrations could be used for phytoremediation and phytostabilization.

  • PDF

Behavior of Geotextile Tube Composite Structure by 2-D Limit Equilibrium and Plane Strain Analysis (2차원 한계평형 및 평면변형해석을 통한 지오텍스타일 튜브 복합구조물의 거동분석)

  • Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The geotextile have been used in filtration and drainage for over 30 years in many applications of civil and environmental projects. Geotextile tube is compound technology of filtration and drainage property of geotextile. Geotextile have been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers, and other innovative systems involving containment of soils using geotextile. They are hydraulically filled with dredged materials. It have been applied in coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. This paper presents the behavior of geotextile tube composite structure by 2-D limit equilibrium and plane strain analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure for the lateral load and also the plane strain analysis was conducted to determine the design and construction factors. Based on the results of this paper, the three types of geotextile tube composite structure is stable. And the optimum tensile strength of geotextile is 151kN/m and maximum pumping pressure is 22.7kN/m.

  • PDF

Perchlorate Removal by River Microorganisms in Industrial Complexes (산업단지지역 하천 미생물에 의한 퍼클로레이트 제거)

  • Jo, Kang-Ick;Ahn, Yeonghee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Perchlorate ($ClO_4^-$) is an emerging contaminant of soil/groundwater and surface water. $ClO_4^-$ has been shown to inhibit iodide uptake into the thyroid gland and cause a reduction in thyroid hormone production. $ClO_4^-$ is highly soluble and very stable in water. Biodegradation by $ClO_4^-$-reducing bacteria (PRB) is considered the most important factor in natural attenuation of $ClO_4^-$. Rivers in an industrial complex have potential to be contaminated with $ClO_4^-$ discharged from point or non-point sources. In this study, water samples were taken from the rivers running through the Gumi industrial complexes and used for batch test to analyze $ClO_4^-$-degradation potential of river microorganisms. The results of 83-h batch culture showed that $ClO_4^-$-removal efficiency of all samples was 0.77% or less without addition of an external electron ($e^-$) donor. However $ClO_4^-$-removal efficiency was higher when an $e^-$ donor (acetate, thiosulfate, $S^0$, or $F^0$) was added into the batch culture, showing up to 100% removal efficiency. The removal efficiency was various depending on type of $e^-$ donor and site of sampling. When acetate was used as an $e^-$ donor, the highest $ClO_4^-$-removal efficiency was observed among the $e^-$ donors used in this study, suggesting that activity of heterotrophic PRB was dominant. The results of this study provide basic information on natural attenuation of $ClO_4^-$ by river microorganisms. The information can be useful to prepare a strategy to enhance efficiency of $ClO_4^-$ biodegradation for in situ bioremediation.

Isolation and Characteristics of a Bacterium Removing Chemical Softener, Organo-polysiloxane (화학유연제, Organopolysiloxane 분해세균의 분리 및 특성)

  • Lee, Jung-Hun;Son, Dong-Chul;Kim, Jung;Kim, Hyun-Soo;Yu, Tae-Shick
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.119-124
    • /
    • 2000
  • Thirty three strains of bacteria were isolated from the wastewater and soil contaminated a chemical softener, nrganopolysiloxane. Of these, five strains which showed higher activities for removal this chemical were finally selected for further study. By five strains the 2,500 mgll chemical softener was removed 65.2-67.9% at $37^{\circ}C$ for 5 days by shaking. The pH optimum for growth of W3721, S3712, and S3723 strain were at around pH 7.0-7.5, and W2811, and W2823 strain were at pH 6.5-7.0, respectively. The temperature optimum for growth of W3712 strain was at $37^{\circ}C$ and the other four strains were at TEX>$30^{\circ}C$. The optimal pH and temperature for removal by W3712 strain was initial pH 7.0 and $37^{\circ}C$ respechvely. The W3712 strain was identified and named as Corynebacterium pseudodiphtheriticum W3712 based on its morphological and physiological characteristics.

  • PDF

A Feasibility Study on the Utilization of by-Product Sludge Generated from Waste Concrete Recycling Process (폐 콘크리트 재생순환자원 부산물 슬러지의 활용 기초연구)

  • Shin, Hee-young;Ji, Sangwoo;Woo, Jeong-youn;Ahn, Gi-oh;An, Sang-ho
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.29-36
    • /
    • 2016
  • The characteristics analysis and pH neutralization test were carried out to use of slurry generated from recycling processes of construction wastes. D (5.0) of raw sludge was $42.4{\mu}m$ and over 60 % of sludge distribute under 45 um (-325 mesh). Muscovite and carbonate minerals were main minerals of fine particles, and the portion of carbonate minerals increased as particle size decreased. Although the more heavy metals were observed in the finer particle size, the contents was found to be less than Korean contaminated soil regulation (area 2). The effects of flocculants addition for accelerating solid-liquid separation were negligible because the slurry already contains excess of coagulant added in the waste concrete recycling process. It was difficult to neutralize the sludge supernatant due to high pH (about 12) by adding acids, but the introduction of $CO_2$ decreased the pH to 8.5, The precipitate recovered during $CO_2$ introduction was determined to be $CaCO_3$ with XRD, and it indicates that high pure $CaCO_3$ could be obtained during the process.

Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption (환경유래의 세슘 저항성 균주 선별 및 세슘 흡착제거 연구)

  • Kim, Gi Yong;Jang, Sung-Chan;Song, Young Ho;Lee, Chang-Soo;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2016
  • One of the issues currently facing nuclear power plants is how to store spent nuclear waste materials which are contaminated with radionuclides such as $^{134}Cs$, $^{135}Cs$, and $^{137}Cs$. Bioremediation processes may offer a potent method of cleaning up radioactive cesium. However, there have only been limited reports on $Cs^+$ tolerant bacteria. In this study, we report the isolation and identification of $Cs^+$ tolerant bacteria in environmental soil and sediment. The resistant $Cs^+$ isolates were screened from enrichment cultures in R2A medium supplemented with 100 mM CsCl for 72 h, followed by microbial community analysis based on sequencing analysis from 16S rRNA gene clone libraries(NCBI's BlastN). The dominant Bacillus anthracis Roh-1 and B. cereus Roh-2 were successfully isolated from the cesium enrichment culture. Importantly, B. cereus Roh-2 is resistant to 30% more $Cs^+$ than is B. anthracis Roh-1 when treated with 50 mM CsCl. Growth experiments clearly demonstrated that the isolate had a higher tolerance to $Cs^+$. In addition, we investigated the adsorption of $0.2mg\;L^{-1}$ $Cs^+$ using B. anthracis Roh-1. The maximum $Cs^+$ biosorption capacity of B. anthracis Roh-1 was $2.01mg\;g^{-1}$ at pH 10. Thus, we show that $Cs^+$ tolerant bacterial isolates could be used for bioremediation of contaminated environments.

Assessment of Groundwater Contamination Using Geographic Information System (지리정보시스템을 이용한 지하수 오염 평가)

  • 전효택;안홍일
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.3
    • /
    • pp.129-140
    • /
    • 1998
  • In this study two sites were selected to investigate groundwater contamination and spatial relationship between pollution level and its source. One is the Asan area, agricultural district where pollution sources are scattered. The other is the Gurogu area of Seoul city, industrial district where industrial complex and residential areas are located. Groundwater samples collected from these districts were analysis for chemical constituents. The attribute value files of the chemical constituents of groundwater and the spatial layers have been constructed and the pollution properties have been investigated to find out spatial relationships between the groundwater constituents and pollution sources using CIS. Relatively high contents of Si and HCO$_3$ in groundwater from the Asan area reflect the effect of water-rock interaction, whereas high contents of Cl, NO$_3$, SO$_4$and Ca in groundwater from the Gurogu area are due to the pollution of various sources. Pollution over the critical level of Korean Dinking Water Standard has been investigated from 15 sampling sites out of 40 in the Asan area, and 33 sampling sites out of 51 in the Gurogu area. There is pollution of NO$_3$, Cl, Fe, Mn, SO$_4$and Zn in groundwater from the Gurogu area, and that of NO$_3$, SO$_4$and Zn in groundwater from the Asan area. Principal pollution in both areas is NO$_3$contamination. Deep groundwater from the Asan area is not contaminated with NO$_3$except for one site and most of shallow groundwater near the potential point sources such as factory and stock farm is contaminated seriously. Groundwater from the Gurogu area has been already polluted seriously considering the fact of contamination of deep groundwater. This study reports a spatial relationship between the pollution level and pollution source using GIS.

  • PDF

An Investigation of the Sources of Nitrate Contamination in the Kyonggi Province Groundwater by Isotope Ratios Analysis of Nitrogen (질소 동위 원소 분석을 이용한 경기도 지역 지하수 중 질산태 질소 오염원 구명)

  • Yoo, Sun-Ho;Choi, Woo-Jung;Han, Gwang Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • $^{15}N$-Isotope concentrations of groundwater from l4 wells with different land-use types in Kyonggi Province were measured to investigate the nitrate contamination sources. Water samples were collected monthly from January to December 1997 and analyzed for pH. PC, anions (fluoride, chloride, nitrate, sulfate, inorganic phosphate, and bicarbonate), and canons (calcium, magnesium, potassium, and sodium). For the analysis of the $^{15}N/^{14}N$ ratio as ${\delta}^{15}N$, $N_2$ samples were prepared through Kjeldahl-Rittenberg method and were analyzed using an isotope ratio mass spectrometer (VG Optima IRMS). Reproducibility of the method and precision of the IRMS were below 1.0‰ and 0.1‰, respectively. The ionic composition of each groundwater sample was only slightly different according to the land-use type. The nitrate concentrations of groundwater in cropland or livestock farming areas were higher than those in the residential area. The percentages of nitrate to total anions of groundwater samples from the livestock farming area were higher than those of other areas. The ${\delta}^{15}N$ values of ammonium sulfate, urea, groundwater sample in the non-contaminated area, and water from the animal manure septic tank were -2.7, 1.4, 5.5, and 27.2‰, respectively. Based on the ${\delta}^{15}N$ values, the sources of nitrate could be classified as originated from chemical fertilizers with ${\delta}^{15}N$ values below 5% and as from animal manure or municipal waste with ${\delta}^{15}N$ values over 10‰. In most cases, contamination sources investigated from ${\delta}^{15}N$ values of groundwater samples were correlated with the specific sources according to the land-use types. However, some ${\delta}^{15}N$ values did not matched the apparent land-use types, and there were seasonal variations of ${\delta}^{15}N$ values within the same well. These results suggest that the groundwater quality was affected by two or more contamination sources and the contribution of each source to the groundwater quality varied depending on the sampling season.

  • PDF

Simultaneous Analysis of 13 Pesticides in Groundwater and Evaluation of its Persistent Characteristics

  • Song, Dahee;Park, Sunhwa;Jeon, Sang-Ho;Kim, Ki-In;Hwang, Jong Yeon;Kim, Moonsu;Jo, Hun-Je;Kim, Deok-hyun;Lee, Gyeong-Mi;Kim, Hye-Jin;Kim, Tae-Seung;Chung, Hyen Mi;Kim, Hyun-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.434-451
    • /
    • 2017
  • For this study, groundwater samples for 3 years from 2011 through 2013 were collected at 106 groundwater monitoring site in Korea. These groundwater samples were analyzed for 13 pesticides such as cabofuran, pentachlorobenzene, hexachlorobenzene, simazine, atrazine, lindane (gamma-HCH), alachlor, heptachlor, chlordane (total), endosulfan (1, 2), dieldrin, endrin, 4,4-DDT. The objectives of this study were to determine the detection frequency and their concentrations of 13 pesticides and evaluate the health risk level considering ingestion, inhalation, and skin contact using concentrations of 13 pesticides in groundwater samples. An analysis was used for the simultaneous determination for 13 pesticides using GC-MS. GC-MS was performed on HP-5ms, using helium ($1ml\;min^{-1}$) as carrier gas. The average recoveries of the pesticides were from 92.8% to 120.8%. The limits of detection (LODs) were between $0.004{\mu}g\;L^{-1}$ and $0.118{\mu}g\;L^{-1}$ and the limits of quantification (LOQs) were between $0.012{\mu}g\;L^{-1}$ and $0.354{\mu}g\;L^{-1}$. 106 groundwater wells were selected. 54 wells were from well to monitor background groundwater quality and 52 wells were from well to monitor groundwater quality in industrial or contamination source area. Eight pesticides including pentachlorobenzene, lindane (Gamma-HCH), heptachlor, chlordane (total), Endosulfan (1, 2), dieldrin, endrin, and 4,4-DDT were not detected in groundwater samples. The detection frequency for hexachlorobenzene, alachlor, carbofuran and simazine was 23.4%, 11.4%, 7.3%, and 1.0%, respectively. Atrazine was detected once in 2011. The average concentrations were $0.00423{\mu}g\;L^{-1}$ for carbofuran, $0.000243{\mu}g\;L^{-1}$ for alachlor, $0.00015{\mu}g\;L^{-1}$ for simazine, and $0.00001{\mu}g\;L^{-1}$ for hexachlorobenzene. The detection frequency of hexachlorobenzene was high, but the average concentration was low. In the contaminated groundwater, the detection frequency for hexachlorobenzene, alachlor, carbofuran, simazine and atrazine was 26.1%, 21.3%, 7.1%, 1.9% and 0.3%, respectively. In the uncontaminated groundwater, detection frequency for hexachlorobenzene, carbofuran and alachlor were 20.2%, 7.5%, and 1.9% respectively. Simazine and atrazine were not detected at uncontaminated groundwater wells. According to the purpose of groundwater use, atrazine was detected for agricultural groundwater use. Hexachlorobenzene showed high detection frequency at agricultural groundwater use area where the animal feeding area and golf course area were located. Alachlor showed more than 50% detection frequency at cropping area, pollution concern river area, and golf course area. Atrazine was detected in agricultural water use area. By land use, the maximum detection frequency of alachlor was found near an orchard. For human risk assessment, the cancer risk for the 5 pesticides was between $10^{-7}$ and $10^{-10}$, while the non-cancer risk (HQ value) was between $10^{-4}$ and $10^{-6}$. For conclusion, these monitoring study needs to continue because of the possibility of groundwater contamination based on various purpose of groundwater use.

Investigation of Microbial Contamination in Oenanthe javanica at Postharvest Environments (미나리(Oenanthe javanica) 수확 후 처리 환경에서의 위생지표세균 및 병원성 미생물 오염도 조사)

  • Kim, Yeon Rok;Lee, Kyoung Ah;Choi, In-Wook;Lee, Young-Ha;Kim, Se-Ri;Kim, Won-Il;Ryu, Song Hee;Lee, Hyo Sub;Ryu, Jae-Gee;Kim, Hwang-Yong
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.268-277
    • /
    • 2014
  • This study assessed microbiological hazards at postharvest stage of dropwort farms (A, B, C, D, E, F, G, H, I) located in 4 different areas in Korea. The samples were assessed for sanitary indication bacteria (total aerobic bacteria, coliform, and Escherichia coli) and pathogenic bacteria (Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus). Total aerobic bacteria and coliform in 9 dropwort farms were detected at the levels of 0~7.00 and 0~4.25 log CFU/g, mL, of $100cm^2$. In particular, microbial contamination in worker's hand showed higher than cultivation environment factors. Escherichia coli was detected in several farms of soil, irrigation water, washing water and worker's hand and also, dropwort in these farms was contaminated with E. coli (positive reaction). In case of pathogenic bacteria, B. cereus was detected at the highest levels in soil. S. aureus was detected qualitatively from only one sample of dropwort washed by water. E. coli O157:H7 and L. monocytogenes were not detected. Although dropwort pass through 2 process (trimming and washing), the microbial contamination was not differ significantly before and after which indicates that current washing system was not effect on reduction of microorganism. From these results, the postharvest environment and workers have been considered as cross-contamination factors. Thus, processing equipments and personal hygiene should be managed to reduce the microbial contamination of dropwort. Accordingly management system such as good agricultural practices (GAP) criteria is needed for the safety of dropwort