• Title/Summary/Keyword: As(V) ion

Search Result 1,276, Processing Time 0.038 seconds

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

A Study on the Channeling Effect of Ultra Low Energy B, P and As Ion Implant to Form Ultra-Shallow Junction of Semiconductor Device (초미세 접합형성을 위한 극 저 에너지 B, P 및 As 이온주입시 채널링 현상에 관한연구)

  • 강정원;황호정
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.27-33
    • /
    • 1999
  • We have investigated the ultra-low energy B, P, and As ion implantation using upgraded MDRANGE code to study formation of nanometer junction depths. Even at the ultra-low energies simulated in this paper, it was revealed that ion channeling should be carefully considered. It was estimated that ion channelings have much effect on dopant profiles when B ion implant energies were more than 500 eV, P more than 2 keV and As approximately more than 4 keV. When we compared 2-dimensional dopant profiles of 1 keV B with that of tilted one, 2 keV P with tilt, and 5 keV As with tilt, we could find that most channeling cases occurred not lateral directions but depth directions.

  • PDF

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF

Conceptual Design of Electrical Power System using Li-ion Cell Technology for a Satellite (리튬이온 전지 기술을 채용한 인공위성용 전력계 개념 설계)

  • Shin, Goo-Hwan;Park, Kyung-Hwa;Kim, Hyung-Myung;Lim, Jong-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • This paper presents the conceptual design of the electrical power system using Li-ion cell technology for a satellite application. Compared to a conventional NiCd cell, a Li-ion cell has a lot of advantages such as an energy density, mass and a volume. Normally, a Li-ion cell has three times than conventional NiCd cells in a capacity such as a cell voltage. The normal voltage of a NiCd cell is around +1.2V and a Li-ion cell could be in +3.6V. However, the handling procedure for a Li-ion cell in charge and discharge might be difficult than a conventional NiCd cell, which means that the charge and discharge of each cell should be monitored and controlled by electrical circuits to prevent an over-charge and over-discharge. Therefore, in this paper we propose the design consideration and the characteristics of a Li-ion cell during charging and discharging battery packs in the point of view of electrical power system.

Determination of Ni in Fly Ash Leach Liquor by Spectrophotometric Method (분광학(分光學)적 방법(方法)에 의한 중유회(重油灰) 용출액(溶出液) 중(中)의 Ni 정량(定量)에 관(關)한 기초(基礎) 연구(硏究))

  • Jo, Jung-Min;Han, Hyea-Chul
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.88-92
    • /
    • 2012
  • We tried to measure the fixed quantity of $Ni^{2+}$ion among the metals which were eluted by distilled water from the Fly Ash Leach Liquor(FALL) with a spectrophotometric method. In addition, we researched absorbance values which had different contained quantity of $V^{3+}$ion in contrast with $Ni^{2+}$ion ppm to find out the influence of the $V^{3+}$ion existed in the FALL on the spectrophotometric fixed quantity of $Ni^{2+}$ion. As a result, when $V^{3+}$ ion has below 50% of amount of $Ni^{2+}$ion, the fixed quantity of $Ni^{2+}$ion among the FALL was able to be confirmed by spectrophotometry.

Change of Refractive Index and Residual Stresses of Ta2O5 Thin Film Prepared by Dual Ion Beam Sputtering Deposition as the Substrate Temperature and Assist ion Beam Energy (이중 이온빔으로 제작한 Ta2O5 박막의 기판 온도 및 보조 이온빔 에너지에 따른 굴절률과 판류응력의 변화)

  • Yeon, Seok-Gyu;Kim, Yong-Tak;Kim, Hwek-Yung;Kim, Myoung-Jin;Lee, Hyung-Man;Yoon, Dae-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.1
    • /
    • pp.28-32
    • /
    • 2005
  • The optical properties and intrinsic stress of $Ta_{2}O_{5}$ thin films deposited by Dual ion-Beam Sputtering: (DIBS) and Single ion-Beam Sputtering (SIBS) were studied as a function of the substrate temperature and assist ion beam voltage. The refractive index showed the maximum value (n = 2.144) at $150^{circ}C$ in the SIBS process. When the substrate temperature has above $150^{circ}C$ in the SIBS process the refractive index decreased. In the DIBS process, the increase of the substrate temperature affected the increase of the refractive index at a maximum value (n = 2.1117, at $200^{circ}C$). The low temperature process $(<100^{circ}C)$ can greatly reduce residual stress with the assist ion gun, but the high temperature process was unaffected. As the assist ion beam voltage increase from 250 to 350 V the refractive index increased to 2.185. However, the refractive index was decreased at the range of 350-650 V, As the assist ion beam voltage increased, the stress of the deposited film decreased to 0.1834 GPa at 650 V.

Determination of As(V) ion by Chemiluminescence Method

  • Lee, Sang-Hak;Jeon, Hyun-Sook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.109-112
    • /
    • 2003
  • A method to determine As(V) ions in aqueous solution by chemiluminescence method has been studied using a stopped flow system. The method is based on the increased chemiluminescence intensity with the addition of As(V) ion to a solution of lucigenin and hydrogen peroxide. The effects of KOH concentration, $H_2O_2$ concentration and flow rate of reagents on the chemiluminescence intensity have been investigated. The calibration curve for As(V) was linear over the range from $1.0{\times}l0^{-6}$M to $1.0{\times}l0^{-4}$M, the coefficient of correlation was 0.997 and the detection limit was $3.3{\times}l0^{-7}$M under the optimal experimental conditions.

  • PDF

Ion-Beam Induced Changes in the Characteristics of Gd Doped Ceria (이온빔 조사에 따른 Gd-doped Ceria의 특성 변화)

  • Kim, Tae-Hyung;Ryu, Boo-Hyung;Lee, In-Ja
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.401-404
    • /
    • 2010
  • The ion-beam induced changes in the characteristics of gadolinium doped ceria (GDC) pellets have been studied by UV-visible spectroscopy (UV-vis), SEM, and XRD. Implanted ions were protons or Xe ions with the energy of 120 keV or 5 MeV. Densely sintered pristine GDC pellets have cubic fluorite structure and are brown in color. As the ion irradiation proceeded, its color gradually turned into light black and finally into dark black. XRD patterns of GDC pellets were closely related with ion energy and the penetration depth of X-ray. It showed that upon the ion irradiation (120 keV) the lattice parameter of the cubic fluorite phase just beneath the surface is increased.

A Design of Ion-Implanted GaAs MESFET's Having High Transconductance Characteristics (이온 주입공정에 의한 고 GaAs MESFET의 설계)

  • Lee, Chang Seok;Shim, Gyu-Hwan;Park, Hyung Moo;Park, Sin-Chong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.6
    • /
    • pp.789-794
    • /
    • 1986
  • The current-voltage characteristics of ion-implanted GaAs MESFET's have been simulated by using the velocity saturation model. Using this model, a MESFET with threshold voltage of -0.5V and transconductance of 460 mS/mm is designed. To implement high transconductance MESFET's, low energy ion-implantation (20 keV) and RTP(Rapid Thermal Process) activation ($575^{\circ}C$, 5sec) processes are required.

  • PDF

A study on the deep levels in boron ion implanted semi-insulating GaAs by PICTS (PICTS방법에 의한 Boron이온을 주입시킨 반절연성 GaAs의 깊은준위에 관한 연구)

  • 최현태;김인수;이철욱;손정식;김영일;배인호
    • Electrical & Electronic Materials
    • /
    • v.8 no.4
    • /
    • pp.426-433
    • /
    • 1995
  • Effect of boron in GaAs have been investigated by photo induced current transient spectroscopy(PICTS). The starting material was undoped liquid encapsulated Czochralski(LEC) semi insulating GaAs and boron ion implantation at 150keV energy was conducted with dose of 10$\^$12/ and 10$\^$13/ions/cm$\^$2/. In ion implanted samples, the peaks related arsenic vacancy(V$\_$As/) were decreased but complex lattice defect was increased with annealing temperature. U band was observed at ion implanted(10$\^$13/ ions/cm$\^$2/) and thermally treated(550.deg. C) sample. More negative peak was detected after annealing at temperature between 600 and 700.deg. C. The measurement of dark current showed that the formation of B$\_$GA/-V$\_$As/, complex defect and complex lattice defect by ion implantation were a reasonable explanation for the decrease in dark current.

  • PDF