• Title/Summary/Keyword: Artillery fire scheduling

Search Result 5, Processing Time 0.018 seconds

A Two-Stage Stochastic Approach to the Artillery Fire Sequencing Problem (2단계 추계학적 야전 포병 사격 순서 결정 모형에 관한 연구)

  • Jo, Jae-Young
    • Journal of the military operations research society of Korea
    • /
    • v.31 no.2
    • /
    • pp.28-44
    • /
    • 2005
  • The previous studies approach the field artillery fire scheduling problem as deterministic and do not explicitly include information on the potential scenario changes. Unfortunately, the effort used to optimize fire sequences and reduce the total time of engagement is often inefficient as the collected military intelligence changes. Instead of modeling the fire sequencing problem as deterministic model, we consider a stochastic artillery fire scheduling model and devise a solution methodology to integrate possible enemy attack scenarios in the evaluation of artillery fire sequences. The goal is to use that information to find robust solutions that withstand disruptions in a better way, Such an approach is important because we can proactively consider the effects of certain unique scheduling decisions. By identifying more robust schedules, cascading delay effects will be minimized. In this paper we describe our stochastic model for the field artillery fire sequencing problem and offer revised robust stochastic model which considers worst scenario first. The robust stochastic model makes the solution more stable than the general two-stage stochastic model and also reduces the computational cost dramatically. We present computational results demonstrating the effectiveness of our proposed method by EVPI, VSS, and Variances.

Algorithms for Fire Sequencing Problem in Unplanned Artillery Attack Operation (포병부대 비계획 사격순서 결정 알고리즘)

  • Choi, Yong-Baek;Kim, Kyung-Sup
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.37-44
    • /
    • 2012
  • This paper focuses on scheduling problems arising in the military. In planned artillery attack operations, a large number of threatening enemy targets should be destroyed to minimize fatal loss to the friendly forces. We consider a situation in which the number of available weapons is smaller than the number of targets. Therefore it is required to develop a new sequencing algorithm for the unplanned artillery attack operation. The objective is to minimize the total loss to the friendly forces from the targets, which is expressed as a function of the fire power potential, after artillery attack operations are finished. We develop an algorithm considering the fire power potential and the time required to destroy the targets. The algorithms suggested in this paper can be used in real artillery attack operations if they are modified slightly to cope with the practical situations.

Real-time Algorithms to Minimize the Threatening Probability in a Fire Scheduling Problem for Unplanned Artillery Attack Operation (비계획 사격상황에서 적 위협 최소화를 위한 실시간 사격순서 결정 연구)

  • Cha, Young-Ho;Bang, June-Young;Shim, Sangoh
    • Korean Management Science Review
    • /
    • v.34 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • We focus on the Real time Fire Scheduling Problem (RFSP), the problem of determining the sequence of targets to be fired at, for the objective of minimizing threatening probability to achieve tactical goals. In this paper, we assume that there are m available weapons to fire at n targets (> m) and the weapons are already allocated to targets. One weapon or multiple weapons can fire at one target and these fire operations should start simultaneously while the finish time of them may be different. We suggest mathematical modeling for RFSP and several heuristic algorithms. Computational experiments are performed on randomly generated test problems and results show that the suggested algorithms outperform the firing method which is generally adopted in the field artillery.

An Optimization of the Planned Target Sequencing Problem Using Scheduling Method (스케줄링을 이용한 계획표적 사격순서의 최적화 방안)

  • Hwang, Won-Shik;Lee, Jae-Yeong
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.105-115
    • /
    • 2007
  • It is essential to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. During the artillery fire operations, minimizing the firing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to schedule the artillery fire on the multiple targets to decrease total fire operation time. To design a program to describe a real firing situation, we consider many possible circumstances of changes such as commander's intention, firing constraints, target priority, and contingency plan to make a fire plan in an artillery unit. In order to work out the target sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to a field artillery unit, it will improve the efficiency of the artillery fire force operations.

Exact Algorithm for the Weapon Target Assignment and Fire Scheduling Problem (표적 할당 및 사격순서결정문제를 위한 최적해 알고리즘 연구)

  • Cha, Young-Ho;Jeong, BongJoo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.143-150
    • /
    • 2019
  • We focus on the weapon target assignment and fire scheduling problem (WTAFSP) with the objective of minimizing the makespan, i.e., the latest completion time of a given set of firing operations. In this study, we assume that there are m available weapons to fire at n targets (> m). The artillery attack operation consists of two steps of sequential procedure : assignment of weapons to the targets; and scheduling firing operations against the targets that are assigned to each weapon. This problem is a combination of weapon target assignment problem (WTAP) and fire scheduling problem (FSP). To solve this problem, we define the problem with a mixed integer programming model. Then, we develop exact algorithms based on a dynamic programming technique. Also, we suggest how to find lower bounds and upper bounds to a given problem. To evaluate the performance of developed exact algorithms, computational experiments are performed on randomly generated problems. From the results, we can see suggested exact algorithm solves problems of a medium size within a reasonable amount of computation time. Also, the results show that the computation time required for suggested exact algorithm can be seen to increase rapidly as the problem size grows. We report the result with analysis and give directions for future research for this study. This study is meaningful in that it suggests an exact algorithm for a more realistic problem than existing researches. Also, this study can provide a basis for developing algorithms that can solve larger size problems.