• Title/Summary/Keyword: Artillery Fire

Search Result 35, Processing Time 0.019 seconds

Classification Type of Weapon Using Artificial Intelligence for Counter-battery RadarPaper Title (인공지능을 이용한 대포병탐지레이더의 탄종 식별)

  • Park, Sung-Jin;Jin, Hyung-Seuk
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.921-930
    • /
    • 2020
  • The Counter-battery radar estimates the origin and impact point of the artillery by tracking the trajectory of the shell. In addition, it has the ability of identifying the type of weapon. Depending on the position between the shell and the radar, the detected signals appear differently. This has ambiguity to distinguish the type of shells. This paper compares fuzzy logic and artificial intelligence, which classifies type of shell using the parameter of signal processing step. According to the research result, artificial intelligence can improve identification rate of type of shell. The data used in the experiment was obtained from a live fire detection test.

A Study on the Possibility of Damage by Anti-aircraft Debris between the Response of Unmanned Aircraft (무인기 대응 간 대공무기 파편에 의한 피해 가능성 연구)

  • Kim, Sea Ill;Shin, Jin
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.1-8
    • /
    • 2020
  • When enemy drones infiltrate large urban areas, various forms of great republics are deployed in large areas to respond. Due to the characteristics of a large number of government-run aircraft, the residual coal, other than the hit bullet, falls into various sizes of debris after its own explosion. The damage rate was analyzed by dividing the debris into anti-aircraft guns and guided weapons by deriving four factors: critical speed, fragmentation mass, initial speed of debris, and object collision speed, which can cause damage to human life as the debris falls to the ground. In the future, the North is expected to infiltrate the capital city of Seoul by operating unmanned aerial vehicles, which are asymmetric forces, and the damage could be minimized by setting up pre-fatal and fire-restricted zones to minimize casualties between responses.

Effect of Information System Quality, Organizational Pressure, and Team Climate on the Appropriation of an Information System and Related Task Performance (정보시스템 품질, 조직압력, 팀 풍토가 정보시스템 전유에 미치는 영향과 과업성과)

  • Min, Kyung Ui;Baek, Seung Nyoung
    • Information Systems Review
    • /
    • v.17 no.1
    • /
    • pp.65-92
    • /
    • 2015
  • Driven by the development of information technologies, information system (IS) use has been common even in military organizations. In particular, field artillery is currently using the Battalion Tactical Commanding System-A1 (BTCS-A1) to improve fire support. The use of BTCS-A1 makes fire-commanding processes simple and autonomous, which leads to shorten time to support fire. Although BTCS-A1 has been considered as a helpful system, there still exists some dispute regarding its effectiveness and impact on task performance. By conceptualizing BTCS-A1 use as appropriation, this study investigates how BTCS-A1 appropriation promotes task performance. We also hypothesize that IS quality, organizational pressure (institutional pressure and supervisor influence), and team climate (team learning climate and team empowerment climate) increase the appropriation. Survey results show that organizational pressure and team climate promote BTCS-A1 appropriation, which improves users' task performance. However, effect of IS quality is not significant. Theoretical and practical implications are presented.

A Study on the Design Improvement to prevent the stoppage phenomenon of Launch Support Device for Self-Propelled Artillery (자주포용 발사지지대의 멈춤현상 방지를 위한 설계개선 연구)

  • Kim, Sung Hoon;Park, Young Min;Noh, Sang Wan;Park, Dae Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.443-450
    • /
    • 2020
  • This paper reports a design improvement study to solve the stoppage phenomenon caused by the launch-support device applied to K105A1. The K105A1 is a weapon system equipped with an old 105 mm towed howitzer in a wheeled vehicle, which provides superior maneuverability compared to track equipment. The launch support device serves to withstand fire impact and load. In this way, this device is fixed firmly to the ground in preparation for the shooting mission and is responsible for the critical performance, such as fixing the position of the vehicle. On the other hand, during the field test, a temporary stoppage of the launch support occurred, which caused a problem of not being fixed to the ground. To solve this problem, the cause of failure was analyzed by a replay test and parts inspection. In addition, the operating concept, method, and design were analyzed to derive the cause and solve the problem by changing the parts design. Finally, the performance and firing missions were performed normally by applying the changed design to K105A1. The performance stability and reliability of the launch support device were confirmed, which are expected to be of great assistance in the development of military equipment in the future.

A Study on Pk(Probability of Kill) Calculation Method of the Direct Fire Weapon System using Simulation (시뮬레이션 기반 직사화기 무기체계의 살상확률 산정 방법에 관한 연구)

  • Choi, Yun Ho;Lee, Ki Teak;Pyun, Jai Jeong;Jang, Young Cheon
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.115-123
    • /
    • 2017
  • Dispite the fact that our military has outwardly made notable accomplishments such as the development of weapon systems like tanks, self-propelled artillery, and missiles, there has been a lack of attention to producing weapon effectiveness data that suggests a standard as to what effects the developed weapons will demonstrate on the battlefield. For such reasons, most of the weapon effectiveness data utilizes JMEM data introduced by the United States and as for the rest of the data that cannot be acquired, respective branches create and utilize their own data through research. This research aims to develop a reliable methodology that can meet the requirements of the requesting branches in a short span of time and at a low cost by studying the existing weapon effectiveness data production methodologies such as that of JMEM. As a result I have developed a method that calculates the vulnerable area and the probability of kill of the weapon system that one wants to calculate by applying statistical technique and simulation technique based on weapon effectiveness data of similar weapon systems in JMEM and live test data.