이 연구는 리빙랩 기반 교육 프로그램의 효과를 메타분석을 통해 종합하기 위해 실시되었다. 자료 분석을 위해 리빙랩 기반 교육의 효과를 보고한 선행연구 7편을 선정하였다. 연구문제는 다음과 같다. 첫째, 리빙랩 기반 교육 프로그램의 전체 효과크기는 어떠한가? 이 때 전체 효과크기는 인지적 영역과 정의적 영역에 대한 효과를 의미한다. 둘째, 범주형 변수에 따른 리빙랩 기반 교육 프로그램의 효과크기는 어떠한가? 이 연구에서 범주형 변수는 연구 결과 특성, 연구 특성, 연구 설계 특성으로 구분하였다. 연구 결과는 다음과 같다. 첫째, 리빙랩 기반 교육의 전체 효과크기는 0.347로 나타났다. 둘째, 인지적 영역에 따른 효과크기는 지식정보처리 1.244, 의사소통능력 0.593, 문제해결능력 0.261, 창의성 0.26의 순으로 나타났다. 셋째, 교과 영역에 따른 효과크기는 전기전자 1.146, 기술가정 0.489, 인공지능 0.379, 실과 0.168의 순으로 나타났다. 넷째, 학교급에 따른 효과크기는 고등학교 1.058, 중학교 0.312, 초등학교 0.217의 순으로 나타났다. 다섯째, 학년에 따른 효과크기는 두 학년 이상을 통합하여 운영한 경우 0.295, 단일 학년 0.294의 순으로 나타났다.
최근 인공지능 기술의 발달에 따라 사용자의 편의성을 위한 기술이 많이 개발되고 있다. 그중 자율주행차에 대한 관심이 나날이 증가하고 있다. 현재 많은 자동차 기업에서 자율주행차 상용화를 목표로 하고 있다. 상용화를 뒷받침할 정부의 새롭고 합리적인 정책 수립의 기반을 조성하기 위하여 뉴스 기사 데이터를 통해 여론의 변화와 인식을 분석하고자 하였다. 따라서 본 논문에서는 최근 3년간 자율주행차와 유사한 용어가 언급된 뉴스 기사 데이터 35,891건을 수집하고, 네트워크 분석하였다. 분석결과, '자율주행', 'AI', '미래', '현대자동차', '자율주행차', '자동차', '산업', '전기차' 등의 주요 키워드가 도출되었다. 또한, 자율주행차 산업은 자동차 기업뿐만 아니라, 반도체 기업, 빅테크 기업 등 다양한 산업과 융합되며 더욱 빠르고 다양한 플랫폼과 서비스 산업으로 발전하고 있으며, 산업의 융복합에 주목하고 있는 것으로 나타났다. 여론의 변화와 인식을 지속적으로 확인하기 위해 SNS 데이터나 기술 트렌드의 지속적인 분석을 통한 인식 분석이 필요할 것으로 판단된다.
정부가 정신질환자의 기준을 강화하고 검진 대상을 전 국민으로 확대한 것은 달라진 시대 상황을 반영한 것이다. OECD의 발표(2021)에 따르면 세계 각국에서 코로나19 팬데믹의 장기화로 이후 우울증과 불안증의 발생이 2배 이상 증가 했으며, 그 중 한국의 유병률이 1위이기 때문이다. 하지만 그러나 정신장애로 진닫받은 사람 중 전문가의 상담과 치료를 받은 비율은 12.1%에 불과하다. 우울증과 단순 우울감의 차이는 의학적으로도 치료 대상이냐 일시적인 현상이냐에 따라 그 의미가 상당히 크지만, 우울감의 지속이 곧 우울증이라는 사실을 알 수 있다. 이러한 우울감의 감소를 위해 칸딘스키의 작품을 영상화하여 창작물을 제작하였다. 제작된 칸딘스키 영상의 재생 속도에 변화를 주어 진행한 실험에서 우울증 환자와 정상인을 비교했을 때 가장 큰 편차를 보였던 베타와 감마값이 90fps로 시청하였을 때 많이 증가하는 수치를 보여 우울감 완화에 가장 효과적이었다. 예술적 창작물은 개인의 시각에 따라 다르게 받아들여 질 수 밖에 없지만, 향후 인공지능과 전통적인 정신 건강 접근 방식을 통합하여 우울증을 겪는 개인의 현상을 개선할 수 있는 연구가 더욱 발전하여 치료에도 널리 이용되기를 희망한다.
자동차의 주요 부품인 휠 베어링에 결함이 생기면 교통사고등 문제를 발생시켜 이를 해결하기 위해 빅데이터를 수집해서 예측진단 및 관리 기술을 통한 휠 베어링의 고장 유무 및 고장 유형을 조기에 알려 주는 알고리즘과 모니터링 시스템 개발이 필요하다. 본 논문에서는 이러한 지능형 휠 허브 베어링 정비 시스템 구현을 위해 신뢰성 및 건전성에 대한 모니터링용 센서 및 예측 진단하는 알고리즘이 탑재된 임베디드 시스템을 개발하였다. 사용된 알고리즘은 휠 베어링에 설치된 가속도 센서로부터 진동 신호를 취득하고 이를 신호 처리기법, 결함주파수 분석, 건전성 특징 인자정의 등의 과정을 빅데이터 기술을 통해 고장을 예측하고 진단할 수 있다. 구현된 알고리즘은 진동 주파수 성분들은 최소화하고 휠 베어링에서 발생하는 진동 성분을 극대화할 수 있는 안정 신호 추출 알고리즘을 적용하고, 필터를 활용한 노이즈 제거에서는 인공지능 기반의 건전성 추출 알고리즘을 적용하였으며, FFT를 통한 결함 주파수를 분석하여 고장 특성인자 추출을 통한 고장을 진단하였다. 본 시스템의 성능 목표는 12,800ODR 이상으로 시험 결과를 통해 목표치를 만족하였다.
BIM에서 가장 중요한 요소 중의 하나가 디지털 데이터이다. 체계적인 디지털 데이터 관리를 위해 최근까지 연구를 통해 객체분류체계(OBS)와 속성분류체계(Pset)가 제시되어 왔다. 특히 공정 및 기성 관리에 사용되는 디지털 데이터는 WBS와 CBS로 나뉘고 이를 BIM 객체와 매핑하려면 CBS의 수량 분개가 필요한데 CBS는 양이 매우 방대하고 공종이나 규격, 명칭 및 CBS 코드가 발주처마다 상이하여 WBS나 BIM 모델에 맞는 수량 분개 작업을 엑셀 등을 이용해서 수작업으로 한다는 것은 사실상 어렵다. 이러한 문제점을 극복하기 위해 BIM 모델에 의해 산출하기 힘든 수량 중에서 대부분을 차지하는 연장에 근거한 수량의 전체분을 분개하는 방안, 축적된 WBS-CBS 이력으로부터 최적 CBS를 도출하는 방안과 합리적인 CBS 데이터베이스 구축을 위해 필수적인 CBS 코드 통합 표준화 방안을 제시하였다.
인공 지능 (AI), 특히 텍스트 생성 서비스 분야에서의 발전은 두드러지게 나타나고 있으며, AI-as-a-Service (AIaaS) 시장은 2028년까지 550억 달러에 달할 것으로 예상된다. 본 연구는 합성 텍스트 미디어 소프트웨어의 품질 요소를 탐구하였으며, 이를 위해 ChatGPT, Writesonic, Jasper, 그리고 Anyword와 같은 산업의 주요 서비스에 주목하였다. 소프트웨어 평가 플랫폼에서 수집된 4,000개 이상의 리뷰를 바탕으로, Gensim 라이브러리를 활용한 잠재 디리클레 할당 (LDA) 주제 모델링 기법을 적용하였다. 이 분석을 통해 11개의 주제가 도출되었다. 이후 이 주제들을 AICSQ 및 AISAQUAL과 같은 기존 논문에서 다루었던 AI 서비스 품질 차원과 비교 분석하였다. 리뷰에서는 가용성 및 효율성과 같은 차원이 주로 강조되었으며, 이전 연구에서 중요하게 여겨졌던 사람다움과 같은 요소는 본 연구에서 강조되지 않았다. 이러한 결과는 AI 서비스의 본질적 특성, 즉 사용자와의 직접적인 상호작용보다 의미론적 이해에 더 중점을 둔다는 특성 때문으로 해석된다. 본 연구는 단일 리뷰 원천 및 평가자들의 인구 통계의 특정성과 같은 잠재적 편향을 인정하며, 향후 연구 방향으로는 이러한 품질 차원이 사용자 만족도에 어떻게 영향을 미치는지, 그리고 개별 차원이 전체 평점에 어떻게 영향을 미치는지에 대한 깊은 분석을 제안한다.
본 논문에서는 근감소증의 발병 여부와 정도를 확인하기 위해 3번 요추부 (L3) CT 영상을 검출하는 딥러닝 모델을 제안하는 것이다. 또한, CT 데이터 내에 L3 레벨과 L3 레벨이 아닌 부분의 데이터 불균형으로 인한 성능 저하의 문제점을 오버샘플링 비율과 클래스 가중치를 설계변수로 하는 최적화 기법을 제시하고자 한다. 모델 학습 및 검증을 위하여 강릉아산병원에 내원한 전립선암 환자 104명, 방광암 환자 46명의 총 150명의 전신 CT 영상이 활용되었다. 딥러닝 모델은 ResNet50을 활용하였으며, 최적화기법의 설계변수로는 모델 하이퍼파라미터 5종과 데이터 증강비율 및 클래스 가중치로 선정하였다. 제안하는 최적화 기반의 L3 레벨 추출 모델은 대조군 (하이퍼파라미터 5종만을 최적화한 모델)과 비교하여 중간 L3 오차가 약 1.0 슬라이스 감소한 것을 확인할 수 있었다. 본 연구결과를 통하여 정확한 L3 슬라이스 검출이 가능하며, 추가적으로 데이터 증강을 통한 오버 샘플링과 클래스 가중치 조절을 통해 데이터 불균형 문제를 효과적으로 해결할 수 있는 가능성을 제시할 수 있다.
오늘날 인공지능 산업이 발전함에 따라 여러 분야에 걸쳐 인공지능을 통한 자동화 및 최적화가 이루어지고 있다. 국내의 철도 분야 또한 지도 학습을 이용한 레일의 결함을 검출하는 연구들을 확인할 수 있다. 그러나 철도에는 레일만이 아닌 다른 구조물들이 존재하며 그중 선로 체결 장치는 레일을 다른 구조물에 결합시켜주는 역할을 하는 장치로 안전사고의 예방을 위해서 주기적인 점검이 필요하다. 본 논문에는 선로 체결 장치의 데이터를 이용하여 준지도 학습(semi-supervised learning)과 전이 학습(transfer learning)을 이용한 분류기를 학습시켜 선로 안전 점검에 사용되는 비용을 줄이는 방안을 제안한다. 사용된 네트워크는 Resnet50이며 imagenet으로 선행 학습된 모델이다. 레이블이 없는 데이터에서 무작위로 데이터를 선정 후 레이블을 부여한 뒤 이를 통해 모델을 학습한다. 학습된 모델의 이용하여 남은 데이터를 예측 후 예측한 데이터 중 클래스 별 확률이 가장 높은 데이터를 정해진 크기만큼 훈련용 데이터에 추가하는 방식을 채택하였다. 추가적으로 초기의 레이블된 데이터의 크기가 끼치는 영향력을 확인해보기 위한 실험을 진행하였다. 실험 결과 최대 92%의 정확도를 얻을 수 있었으며 이는 지도 학습 대비 5% 내외의 성능 차이를 가진다. 이는 제안한 방안을 통해 추가적인 레이블링 과정 없이 비교적 적은 레이블을 이용하여 분류기의 성능을 기존보다 향상시킬 수 있을 것으로 예상된다.
우크라이나-러시아 전을 통해 드론의 군사적 가치는 재평가되고 있으며, 북한은 '22년 말 대남 드론 도발을 통해 실제 검증까지 완료한 바 있다. 또한, 북한은 인공지능(AI) 기술의 드론 적용을 추진하고 있는 것으로 드러나 드론의 위협은 나날이 커지고 있다. 이에 우리 군은 드론작전사령부를 창설하고 다양한 드론 대응 체계를 도입하는 등 대 드론 체계 구축을 도모하고 있지만, 전력증강 노력이 타격체계 위주로 편중되어 군집드론 공격에 대한 효과적 대응이 우려된다. 특히, 도심에 인접한 공군 비행단은 민간 피해가 우려되어 재래식 방공무기의 사용 역시 극도로 제한되는 실정이다. 이에 본 연구에서는 AI기술이 적용된 적 군집드론의 위협으로부터 아 항공기의 생존성 향상을 위해 AI모델의 객체탐지 능력을 저해하는 소극방공 기법을 제안한다. 대표적인 적대적 머신러닝(Adversarial machine learning) 기술 중 하나인 적대적 예제(Adversarial example)를 레이저를 활용하여 항공기에 조사함으로써, 적 드론에 탑재된 객체인식 AI의 인식률 저하를 도모한다. 합성 이미지와 정밀 축소모형을 활용한 실험을 수행한 결과, 제안기법 적용 전 약 95%의 인식률을 보이는 객체인식 AI의 인식률을 제안기법 적용 후 0~15% 내외로 저하시키는 것을 확인하여 제안기법의 실효성을 검증하였다.
4차산업혁명으로 인해 인공지능(AI), 빅데이터(Big Data), 클라우드(Cloud) 등 다양한 기술들의 혁신이 가속화되고 있고 데이터가 중요한 자산으로 여겨지고 있다. 이러한 기술의 발전에 따라 국방과학기술분야에서도 기술 혁신을 창출하기 위한 다양한 노력들이 진행되고 있다. 국내에서도 정부는 2023년 3월에 첨단과학기술 강군 육성을 위한 5대 중점과 16개 과제로 구성된 「국방혁신 4.0 기본계획」을 발표했다. 이 계획에는 인사·군수 분야에서도 빅데이터를 구축하는 내용에 무기체계 운용성·가용성 향상과 국방비 절감을 위한 상태기반정비체계(CBM+) 구축에 관한 내용이 포함되어 있다. 상태기반정비(Condition Based Maintenance, CBM)는 무기체계의 신뢰도 확보와 가용성 증대를 목표로 하며 장비의 상태정보 변화를 분석하여 고장과 결함의 징후로 식별하여 정비를 수행하는 개념이고, CBM+는 기존 CBM의 개념에 잔존유효수명(Remaining Useful Life) 예측 기술이 더해진 개념이다[1]. 무기체계 상태기반정비체계 구축을 위해서는 무기체계의 상태정보 획득을 위해 센서를 설치하고 수집된 센서데이터가 필요하다. 본 논문에서는 다양한 무기체계에 설치된 센서에서 수집된 센서데이터를 효율적이고 효과적으로 관리하기 위한 센서데이터 메타데이터 스키마를 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.