• Title/Summary/Keyword: Artificial-Intelligence

Search Result 5,387, Processing Time 0.027 seconds

The effect of perceived social exclusion on warm lighting preferences (지각된 사회적 배제가 따뜻한 조명 선호에 미치는 효과)

  • Lee, Guk-Hee
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.5-12
    • /
    • 2019
  • Social exclusion, which does not fulfill the desire for respect as one of the most basic human desires, makes those who perceive themselves to be socially excluded seek physical warmth. However, very few studies have examined whether this phenomenon-wherein social exclusion develops a preference for warmth-can be generalized to the emotional or symbolic aspects, such as the color of lighting. This study aimed to verify the effects of perceived social exclusion on warm lighting preferences, and two experiments were performed for this purpose. In Experiment-1, participants who were respected by people the previous day were assigned to the group that did not perceive social exclusion (non-perceived social exclusion group), and those who were not respected were assigned to the group that perceived social exclusion (perceived social exclusion group). Following this, their preference for warm lighting (3000K), neutral lighting (4000K), and cold lighting (6000K) was measured. The results showed that the perceived social exclusion group had a stronger preference for warm lighting and a weaker preference for cold lighting than did their counterparts. Moreover, the perceived social exclusion group showed a strong preference for warm lighting over neutral lighting; they also showed a weak preference for cold lighting. In Experiment-2, after assigning the participants into groups as in Experiment-1, the participants' preference for a space with warm lighting, neutral lighting, and cold lighting was measured. The results showed that the perceived social exclusion group had a stronger preference for the space with warm lighting and a weaker preference for cold lighting than did their counterparts. Further, the perceived social exclusion group showed a strong preference for the space with warm lighting over the space with neutral lighting; they also showed a weak preference for the space with cold lighting. The findings of this study have implications that can be applied to designing living spaces for people who experience social exclusion, such as handicapped individuals, multicultural families, or immigrant workers, as well as developing artificial intelligence services and cyber-friend characters for this demographic.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

An Outlier Detection Using Autoencoder for Ocean Observation Data (해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구)

  • Kim, Hyeon-Jae;Kim, Dong-Hoon;Lim, Chaewook;Shin, Yongtak;Lee, Sang-Chul;Choi, Youngjin;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.265-274
    • /
    • 2021
  • Outlier detection research in ocean data has traditionally been performed using statistical and distance-based machine learning algorithms. Recently, AI-based methods have received a lot of attention and so-called supervised learning methods that require classification information for data are mainly used. This supervised learning method requires a lot of time and costs because classification information (label) must be manually designated for all data required for learning. In this study, an autoencoder based on unsupervised learning was applied as an outlier detection to overcome this problem. For the experiment, two experiments were designed: one is univariate learning, in which only SST data was used among the observation data of Deokjeok Island and the other is multivariate learning, in which SST, air temperature, wind direction, wind speed, air pressure, and humidity were used. Period of data is 25 years from 1996 to 2020, and a pre-processing considering the characteristics of ocean data was applied to the data. An outlier detection of actual SST data was tried with a learned univariate and multivariate autoencoder. We tried to detect outliers in real SST data using trained univariate and multivariate autoencoders. To compare model performance, various outlier detection methods were applied to synthetic data with artificially inserted errors. As a result of quantitatively evaluating the performance of these methods, the multivariate/univariate accuracy was about 96%/91%, respectively, indicating that the multivariate autoencoder had better outlier detection performance. Outlier detection using an unsupervised learning-based autoencoder is expected to be used in various ways in that it can reduce subjective classification errors and cost and time required for data labeling.

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

A Study on the Development Direction of Medical Image Information System Using Big Data and AI (빅데이터와 AI를 활용한 의료영상 정보 시스템 발전 방향에 대한 연구)

  • Yoo, Se Jong;Han, Seong Soo;Jeon, Mi-Hyang;Han, Man Seok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.317-322
    • /
    • 2022
  • The rapid development of information technology is also bringing about many changes in the medical environment. In particular, it is leading the rapid change of medical image information systems using big data and artificial intelligence (AI). The prescription delivery system (OCS), which consists of an electronic medical record (EMR) and a medical image storage and transmission system (PACS), has rapidly changed the medical environment from analog to digital. When combined with multiple solutions, PACS represents a new direction for advancement in security, interoperability, efficiency and automation. Among them, the combination with artificial intelligence (AI) using big data that can improve the quality of images is actively progressing. In particular, AI PACS, a system that can assist in reading medical images using deep learning technology, was developed in cooperation with universities and industries and is being used in hospitals. As such, in line with the rapid changes in the medical image information system in the medical environment, structural changes in the medical market and changes in medical policies to cope with them are also necessary. On the other hand, medical image information is based on a digital medical image transmission device (DICOM) format method, and is divided into a tomographic volume image, a volume image, and a cross-sectional image, a two-dimensional image, according to a generation method. In addition, recently, many medical institutions are rushing to introduce the next-generation integrated medical information system by promoting smart hospital services. The next-generation integrated medical information system is built as a solution that integrates EMR, electronic consent, big data, AI, precision medicine, and interworking with external institutions. It aims to realize research. Korea's medical image information system is at a world-class level thanks to advanced IT technology and government policies. In particular, the PACS solution is the only field exporting medical information technology to the world. In this study, along with the analysis of the medical image information system using big data, the current trend was grasped based on the historical background of the introduction of the medical image information system in Korea, and the future development direction was predicted. In the future, based on DICOM big data accumulated over 20 years, we plan to conduct research that can increase the image read rate by using AI and deep learning algorithms.

A Study on the Potential Use of ChatGPT in Public Design Policy Decision-Making (공공디자인 정책 결정에 ChatGPT의 활용 가능성에 관한연구)

  • Son, Dong Joo;Yoon, Myeong Han
    • Journal of Service Research and Studies
    • /
    • v.13 no.3
    • /
    • pp.172-189
    • /
    • 2023
  • This study investigated the potential contribution of ChatGPT, a massive language and information model, in the decision-making process of public design policies, focusing on the characteristics inherent to public design. Public design utilizes the principles and approaches of design to address societal issues and aims to improve public services. In order to formulate public design policies and plans, it is essential to base them on extensive data, including the general status of the area, population demographics, infrastructure, resources, safety, existing policies, legal regulations, landscape, spatial conditions, current state of public design, and regional issues. Therefore, public design is a field of design research that encompasses a vast amount of data and language. Considering the rapid advancements in artificial intelligence technology and the significance of public design, this study aims to explore how massive language and information models like ChatGPT can contribute to public design policies. Alongside, we reviewed the concepts and principles of public design, its role in policy development and implementation, and examined the overview and features of ChatGPT, including its application cases and preceding research to determine its utility in the decision-making process of public design policies. The study found that ChatGPT could offer substantial language information during the formulation of public design policies and assist in decision-making. In particular, ChatGPT proved useful in providing various perspectives and swiftly supplying information necessary for policy decisions. Additionally, the trend of utilizing artificial intelligence in government policy development was confirmed through various studies. However, the usage of ChatGPT also unveiled ethical, legal, and personal privacy issues. Notably, ethical dilemmas were raised, along with issues related to bias and fairness. To practically apply ChatGPT in the decision-making process of public design policies, first, it is necessary to enhance the capacities of policy developers and public design experts to a certain extent. Second, it is advisable to create a provisional regulation named 'Ordinance on the Use of AI in Policy' to continuously refine the utilization until legal adjustments are made. Currently, implementing these two strategies is deemed necessary. Consequently, employing massive language and information models like ChatGPT in the public design field, which harbors a vast amount of language, holds substantial value.

Changes in Perceptions of Science Classes Using Artificial Intelligence among Elementary Teachers Participating in Research School (연구학교 참여 초등교사의 인공지능 활용 과학 수업에 관한 인식 변화)

  • Kim, Tae Ha;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.3
    • /
    • pp.467-479
    • /
    • 2023
  • For the successful implementation of education using artificial intelligence (AI) in schools, the perception of teachers is important. This study focuses on elementary school teachers and their perception of the need and teaching efficacy of science classes using AI before and after participating in a research school program. The analysis explores four key aspects, namely, learning, teaching, assessment, and communication. The study recruited 24 elementary school teachers from a school designated by the Gangwon Provincial Office of Education to participate in a year-long research school program. The study collected data using pre- and post-program surveys to explore changes in the perception of teachers regarding AI-based science classes. Furthermore, the researchers conducted individual in-depth interviews with four elementary school teachers to investigate the experience factors that influenced the changes in their perception of the aforementioned classes. The main findings were as follows. First, elementary school teachers were positively aware of the need for science classes using AI even prior to their research school experience; this perception remained positive after the research school program. Second, the science teaching efficacy of the elementary school teachers using AI was generally moderate. Even after the research school experience, the study found no statistically significant increase in efficacy in teaching science using AI. Third, by analyzing the necessity-efficacy as quadrants, the study observed that approximately half of the teachers who participated in the research school reported positive changes in learning, teaching, and assessment. Fourth, the study extracted four important experience factors that influenced the perception of the teachers of science classes using AI, namely, personal background and characteristics, personal class practice experience, teacher community activities, and administration and work of school. Furthermore, the study discussed the implications of these results in terms of the operation of research schools and science education using AI in elementary schools.

A Study on the Decision Factors for AI-based SaMD Adoption Using Delphi Surveys and AHP Analysis (델파이 조사와 AHP 분석을 활용한 인공지능 기반 SaMD 도입 의사결정 요인에 관한 연구)

  • Byung-Oh Woo;Jay In Oh
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.111-129
    • /
    • 2023
  • With the diffusion of digital innovation, the adoption of innovative medical technologies based on artificial intelligence is increasing in the medical field. This is driving the launch and adoption of AI-based SaMD(Software as a Medical Device), but there is a lack of research on the factors that influence the adoption of SaMD by medical institutions. The purpose of this study is to identify key factors that influence medical institutions' decisions to adopt AI-based SaMDs, and to analyze the weights and priorities of these factors. For this purpose, we conducted Delphi surveys based on the results of literature studies on technology acceptance models in healthcare industry, medical AI and SaMD, and developed a research model by combining HOTE(Human, Organization, Technology and Environment) framework and HABIO(Holistic Approach {Business, Information, Organizational}) framework. Based on the research model with 5 main criteria and 22 sub-criteria, we conducted an AHP(Analytical Hierarchy Process) analysis among the experts from domestic medical institutions and SaMD providers to empirically analyze SaMD adoption factors. The results of this study showed that the priority of the main criteria for determining the adoption of AI-based SaMD was in the order of technical factors, economic factors, human factors, organizational factors, and environmental factors. The priority of sub-criteria was in the order of reliability, cost reduction, medical staff's acceptance, safety, top management's support, security, and licensing & regulatory levels. Specifically, technical factors such as reliability, safety, and security were found to be the most important factors for SaMD adoption. In addition, the comparisons and analyses of the weights and priorities of each group showed that the weights and priorities of SaMD adoption factors varied by type of institution, type of medical institution, and type of job in the medical institution.

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation (덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용)

  • Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.17-24
    • /
    • 2023
  • A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.

Analyze Technologies and Trends in Commercialized Radiology Artificial Intelligence Medical Device (상용화된 영상의학 인공지능 의료기기의 기술 및 동향 분석)

  • Chang-Hwa Han
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.881-887
    • /
    • 2023
  • This study aims to analyze the development and current trends of AI-based medical imaging devices commercialized in South Korea. As of September 30, 2023, there were a total of 186 AI-based medical devices licensed, certified, and reported to the Korean Ministry of Food and Drug Safety, of which 138 were related to imaging. The study comprehensively examined the yearly approval trends, equipment types, application areas, and key functions from 2018 to 2023. The study found that the number of AI medical devices started from four products in 2018 and grew steadily until 2023, with a sharp increase after 2020. This can be attributed to the interaction between the advancement of AI technology and the increasing demand in the medical field. By equipment, AI medical devices were developed in the order of CT, X-ray, and MR, which reflects the characteristics and clinical importance of the images of each equipment. This study found that the development of AI medical devices for specific areas such as the thorax, cranial nerves, and musculoskeletal system is active, and the main functions are medical image analysis, detection and diagnosis assistance, and image transmission. These results suggest that AI's pattern recognition and data analysis capabilities are playing an important role in the medical imaging field. In addition, this study examined the number of Korean products that have received international certifications, particularly the US FDA and European CE. The results show that many products have been certified by both organizations, indicating that Korean AI medical devices are in line with international standards and are competitive in the global market. By analyzing the impact of AI technology on medical imaging and its potential for development, this study provides important implications for future research and development directions. However, challenges such as regulatory aspects, data quality and accessibility, and clinical validity are also pointed out, requiring continued research and improvement on these issues.