• 제목/요약/키워드: Artificial neuron network

검색결과 46건 처리시간 0.033초

Evolving Cellular Automata Neural Systems(ECANS 1)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.158-163
    • /
    • 1998
  • This paper is our first attempt to construct a information processing system such as the living creatures' brain based on artificial life technique. In this paper, we propose a method of constructing neural networks using bio-inspired emergent and evolutionary concept, Ontogeny of living things is realized by cellular automata model and Phylogeny that is living things adaptation ability themselves to given environment, are realized by evolutionary algorithms. Proposing evolving cellular automata neural systems are calledin a word ECANS. A basic component of ECANS is 'cell' which is modeled on chaotic neuron with complex characteristics, In our system, the states of cell are classified into eight by method of connection neighborhood cells. When a problem is given, ECANS adapt itself to the problem by evolutionary method. For fixed cells transition rule, the structure of neural network is adapted by change of initial cell' arrangement. This initial cell is to become a network b developmental process. The effectiveness and the capability of proposed scheme are verified by applying it to pattern classification and robot control problem.

  • PDF

시간축 및 요일축 정보의 조합을 이용한 신경회로망 기반의 평일 계통한계가격 예측 (A SMP Forecasting Method Based on Artificial Neural Network Using Time and Day Information)

  • 이정규;김민수;박종배;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.438-440
    • /
    • 2003
  • This paper resents an application of an Artificial Neural Network(ANN) technique to forecast the short-term system marginal price(SMP). The forecasting of SMP is a very important factor in an electricity market for the optimal biddings of market participants as well as for the market stabilization of regulatory bodies. The proposed neural network scheme is composed of three layers. In this process, input data are set up to reflect market conditions. And the $\lambda$ that is the coefficient of activation function is modified in order to give a proper signal to each neuron and improve the adaptability for a neural network. The reposed techniques are trained validated and tested with the historical real-world data from korea Power Exchange(KPX).

  • PDF

로봇을 위한 인공 두뇌 개발 (Artificial Brain for Robots)

  • 이규빈;권동수
    • 로봇학회논문지
    • /
    • 제1권2호
    • /
    • pp.163-171
    • /
    • 2006
  • This paper introduces the research progress on the artificial brain in the Telerobotics and Control Laboratory at KAIST. This series of studies is based on the assumption that it will be possible to develop an artificial intelligence by copying the mechanisms of the animal brain. Two important brain mechanisms are considered: spike-timing dependent plasticity and dopaminergic plasticity. Each mechanism is implemented in two coding paradigms: spike-codes and rate-codes. Spike-timing dependent plasticity is essential for self-organization in the brain. Dopamine neurons deliver reward signals and modify the synaptic efficacies in order to maximize the predicted reward. This paper addresses how artificial intelligence can emerge by the synergy between self-organization and reinforcement learning. For implementation issues, the rate codes of the brain mechanisms are developed to calculate the neuron dynamics efficiently.

  • PDF

머신러닝 및 딥러닝 연구동향 분석: 토픽모델링을 중심으로 (Research Trends Analysis of Machine Learning and Deep Learning: Focused on the Topic Modeling)

  • 김창식;김남규;곽기영
    • 디지털산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.19-28
    • /
    • 2019
  • The purpose of this study is to examine the trends on machine learning and deep learning research in the published journals from the Web of Science Database. To achieve the study purpose, we used the abstracts of 20,664 articles published between 1990 and 2017, which include the word 'machine learning', 'deep learning', and 'artificial neural network' in their titles. Twenty major research topics were identified from topic modeling analysis and they were inclusive of classification accuracy, machine learning, optimization problem, time series model, temperature flow, engine variable, neuron layer, spectrum sample, image feature, strength property, extreme machine learning, control system, energy power, cancer patient, descriptor compound, fault diagnosis, soil map, concentration removal, protein gene, and job problem. The analysis of the time-series linear regression showed that all identified topics in machine learning research were 'hot' ones.

Spiking Neural Networks(SNN) 구조에서 뉴런의 개수와 학습량에 따른 학습 성능 변화 분석 (An analysis of learning performance changes in spiking neural networks(SNN))

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제6권3호
    • /
    • pp.463-468
    • /
    • 2020
  • 인공지능 연구는 다양한 분야에 적용되며 발전하고 있다. 본 논문에서는 차세대 인공지능 연구 분야인 SNN(Spiking Neural Networks) 형태의 인공지능 구현 방식을 사용하여 신경망을 구축하고, 그 신경망에서 뉴런의 개수가 신경망의 성능에 어떠한 영향을 미치는지를 분석한다. 또한 신경망 학습량을 증가시키면서 신경망의 성능이 어떻게 바뀌는지를 분석한다. 해당 연구 결과를 통해 각 분야에서 사용되는 SNN 기반의 신경망을 최적화 할 수 있을 것이다.

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

적응력을 갖는 신경회로망에 의한 성분별 부하 예측 (A Component-wise Load Forecasting by Adaptable Artificial Neural Network)

  • 임재윤;김진수;김정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 추계학술대회 논문집 학회본부
    • /
    • pp.21-23
    • /
    • 1994
  • The degree of forecast accuracy with BP-algorithm largely depends upon the neuron number in hidden layer. In order to construct the optimal structure, first, we prescribe the error bounds of learning procedure, and then, we provid the method of incrementing the number of hidden neurons by using the derivative of errors with respect to an output neuron weights. For the case study, we apply the proposed method to forecast the component-wise residential load, and compare this results to that of time series forecasting.

  • PDF

비전공자 학부생의 훈련데이터와 기초 인공신경망 개발 결과 분석 및 Orange 활용 (Analysis and Orange Utilization of Training Data and Basic Artificial Neural Network Development Results of Non-majors)

  • 허경
    • 실천공학교육논문지
    • /
    • 제15권2호
    • /
    • pp.381-388
    • /
    • 2023
  • 스프레드시트를 활용한 인공신경망 교육을 통해, 비전공자 학부생들은 인공신경망의 동작 원리을 이해하며 자신만의 인공신경망 SW를 개발할 수 있다. 여기서, 인공신경망의 동작 원리 교육은 훈련데이터의 생성과 정답 라벨의 할당부터 시작한다. 이후, 인공 뉴런의 발화 및 활성화 함수, 입력층과 은닉층 그리고 출력층의 매개변수들로부터 계산되는 출력값을 학습한다. 마지막으로, 최초 정의된 각 훈련데이터의 정답 라벨과 인공신경망이 계산한 출력값 간 오차를 계산하는 과정을 학습하고 오차제곱의 총합을 최소화하는 입력층과 은닉층 그리고 출력층의 매개변수들이 계산되는 과정을 학습한다. 스프레드시트를 활용한 인공신경망 동작 원리 교육을 비전공자 학부생 대상으로 실시하였다. 그리고 이미지 훈련데이터와 기초 인공신경망 개발 결과를 수집하였다. 본 논문에서는 12화소 크기의 소용량 이미지로 두 가지 훈련데이터와 해당 인공신경망 SW를 수집한 결과를 분석하고, 수집한 훈련데이터를 Orange 머신러닝 모델 학습 및 분석 도구에 활용하는 방법과 실행 결과를 제시하였다.

Stock Market Forecasting : Comparison between Artificial Neural Networks and Arch Models

  • Merh, Nitin
    • Journal of Information Technology Applications and Management
    • /
    • 제19권1호
    • /
    • pp.1-12
    • /
    • 2012
  • Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.

SOM과 grassfire 기법을 이용한 효율적인 컬러 영상 분할 (Efficient Color Image Segmentation using SOM and Grassfire Algorithm)

  • 황영철;차의영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 지능정보 및 응용 학술대회
    • /
    • pp.142-145
    • /
    • 2008
  • 본 논문에서는 self-organizing map(SOM)과 grassfire 기법을 이용한 계산 효율적인 컬러 영상 분할 방법을 제안한다. SOM에서 출력 뉴런 수를 축소하고 학습에 사용하는 입력 데이터를 줄임으로써 실행 시간을 단축 시켰다. 입력 영상을 CIE $L^*u^*v^*$ 컬러 공간으로 변환하고 3개의 입력 뉴런과 $4{\times}4$ 또는 $3{\times}3$ 출력 뉴런 구조의 SOM을 이용해 학습한다. 학습 완료 후 입력 영상의 픽셀에 대응하는 출력 값을 구하고 grassfire 기법을 이용해 지역적으로 인접하고 출력 값이 동일한 픽셀들을 하나의 영역으로 결합한다. 다양한 영상을 이용한 실험을 통해 제안한 방법이 컬러 영상 분할에서 기존의 방법에 비해 좋은 결과를 얻을 수 있음을 확인하였다.

  • PDF