• Title/Summary/Keyword: Artificial neural

Search Result 3,622, Processing Time 0.034 seconds

Load Prediction using Finite Element Analysis and Recurrent Neural Network (유한요소해석과 순환신경망을 활용한 하중 예측)

  • Jung-Ho Kang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.151-160
    • /
    • 2024
  • Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.

Automatic Composition Using Training Capability of Artificial Neural Networks and Chord Progression (인공신경망의 학습기능과 화성진행을 이용한 자동작곡)

  • Oh, Jin-Woo;Song, Jung-Hyun;Kim, Kyung-Hwan;Jung, Sung Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1358-1366
    • /
    • 2015
  • This paper proposes an automatic composition method using the training capability of artificial neural networks and chord progression rules that are widely used by human composers. After training a given song, the new melody is generated by the trained artificial neural networks through applying a different initial melody to the neural networks. The generated melody should be modified to fit the rhythm and chord progression rules for generating natural melody. In order to achieve this object, we devised a post-processing method such as chord candidate generation, chord progression, and melody correction. From some tests we could find that the melody after the post-processing was very improved from the melody generated by artificial neural networks. This enables our composition system to generate a melody which is similar to those generated by human composers.

Development of Neural-Networks-based Model for the Fourier Amplitude Spectrum and Parameter Identification in the Generation of an Artificial Earthquake (인공 지진 생성에서 Fourier 진폭 스펙트럼과 변수 추정을 위한 신경망 모델의 개발)

  • 조빈아;이승창;한상환;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.439-446
    • /
    • 1998
  • One of the most important roles in the nonlinear dynamic structural analysis is to select a proper ground excitation, which dominates the response of a structure. Because of the lack of recorded accelerograms in Korea, a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms is necessarily required. If all information is not available at site, the information from other sites with similar features can be used by the procedure of seismic hazard analysis. Eliopoulos and Wen identified the parameters of the ground motion model by the empirical relations or expressions developed by Trifunac and Lee. Because the relations used in the parameter identification are largely empirical, it is required to apply the artificial neural networks instead of the empirical model. Additionally, neural networks have the advantage of the empirical model that it can continuously re-train the new recorded data, so that it can adapt to the change of the enormous data. Based on the redefined traditional processes, three neural-networks-based models (FAS_NN, PSD_NN and INT_NN) are proposed to individually substitute the Fourier amplitude spectrum, the parameter identification of power spectral density function and intensity function. The paper describes the first half of the research for the development of Neural-Networks-based model for the generation of an Artificial earthquake and a Response Spectrum(NNARS).

  • PDF

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

Automatic Generation of a Configured Song with Hierarchical Artificial Neural Networks (계층적 인공신경망을 이용한 구성을 갖춘 곡의 자동생성)

  • Kim, Kyung-Hwan;Jung, Sung Hoon
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.641-647
    • /
    • 2017
  • In this paper, we propose a method to automatically generate a configured song with melodies composed of front/middle/last parts by using hierarchical artificial neural networks in automatic composition. In the first layer, an artificial neural network is used to learn an existing song or a random melody and outputs a song after performing rhythm post-processing. In the second layer, the melody created by the artificial neural network in the first layer is learned by three artificial neural networks of front/middle/last parts in the second layer in order to make a configured song. In the artificial neural network of the second layer, we applied a method to generate repeatability using measure identity in order to make song with repeatability and after that the song is completed after rhythm, chord, tonality post-processing. It was confirmed from experiments that our proposed method produced configured songs well.

Study of Fuel Pump Failure Prognostic Based on Machine Learning Using Artificial Neural Network (인공신경망을 이용한 머신러닝 기반의 연료펌프 고장예지 연구)

  • Choi, Hong;Kim, Tae-Kyung;Heo, Gyeong-Rin;Choi, Sung-Dae;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.52-57
    • /
    • 2019
  • The key technology of the fourth industrial revolution is artificial intelligence and machine learning. In this study, FMEA was performed on fuel pumps used as key items in most systems to identify major failure components, and artificial neural networks were built using big data. The main failure mode of the fuel pump identified by the test was coil damage due to overheating. Based on the artificial neural network built, machine learning was conducted to predict the failure and the mean error rate was 4.9% when the number of hidden nodes in the artificial neural network was three and the temperature increased to $140^{\circ}C$ rapidly.

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

A Decentralized Approach to Power System Stabilization by Artificial Neural Network Based Receding Horizon Optimal Control (이동구간 최적 제어에 의한 전력계통 안정화의 분산제어 접근 방법)

  • Choi, Myeon-Song
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.815-823
    • /
    • 1999
  • This study considers an implementation of artificial neural networks to the receding horizon optimal control and is applications to power systems. The Generalized Backpropagation-Through-Time (GBTT) algorithm is presented to deal with a quadratic cost function defined in a finite-time horizon. A decentralized approach is used to control the complex global system with simpler local controllers that need only local information. A Neural network based Receding horizon Optimal Control (NROC) 1aw is derived for the local nonlinear systems. The proposed NROC scheme is implemented with two artificial neural networks, Identification Neural Network (IDNN) and Optimal Control Neural Network (OCNN). The proposed NROC is applied to a power system to improve the damping of the low-frequency oscillation. The simulation results show that the NROC based power system stabilizer performs well with good damping for different loading conditions and fault types.

  • PDF

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Exploring the Feasibility of Neural Networks for Criminal Propensity Detection through Facial Features Analysis

  • Amal Alshahrani;Sumayyah Albarakati;Reyouf Wasil;Hanan Farouquee;Maryam Alobthani;Someah Al-Qarni
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.11-20
    • /
    • 2024
  • While artificial neural networks are adept at identifying patterns, they can struggle to distinguish between actual correlations and false associations between extracted facial features and criminal behavior within the training data. These associations may not indicate causal connections. Socioeconomic factors, ethnicity, or even chance occurrences in the data can influence both facial features and criminal activity. Consequently, the artificial neural network might identify linked features without understanding the underlying cause. This raises concerns about incorrect linkages and potential misclassification of individuals based on features unrelated to criminal tendencies. To address this challenge, we propose a novel region-based training approach for artificial neural networks focused on criminal propensity detection. Instead of solely relying on overall facial recognition, the network would systematically analyze each facial feature in isolation. This fine-grained approach would enable the network to identify which specific features hold the strongest correlations with criminal activity within the training data. By focusing on these key features, the network can be optimized for more accurate and reliable criminal propensity prediction. This study examines the effectiveness of various algorithms for criminal propensity classification. We evaluate YOLO versions YOLOv5 and YOLOv8 alongside VGG-16. Our findings indicate that YOLO achieved the highest accuracy 0.93 in classifying criminal and non-criminal facial features. While these results are promising, we acknowledge the need for further research on bias and misclassification in criminal justice applications