• Title/Summary/Keyword: Artificial lighting sources

Search Result 40, Processing Time 0.026 seconds

A Study on the Development of Database for Lighting Design System (조명 설계 시스템을 위한 데이터베이스 개발에 관한 연구)

  • 조성오
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.4
    • /
    • pp.196-203
    • /
    • 2004
  • In The Lighting design is important to acknowledge appearance space. Development of artificial light makes a extension to life space in the Modern life. With the rapid development of efficient light sources, have lighting design acquired the tools that allow artificial lighting to be produced with adequate illuminance levels. However, by the task of defining the objectives and methods behind discipline, of deciding on the criteria by which the artificial lighting that is now provide many available data to be anpaied. The main concern is which illuminace levels and types of lighting will ensure optimum visual performance, high productive and safety at design which are affordable. This study is support to standard design process with material reflection rate, installing the lighting fixture, task illuminance level and automatic arithmetic calculation during the lighting design. Lighting Design database can check and support other final lighting level. A quantitative light that is primarily oriented toward providing a recommended illuminance level, the criterion of develop a concept that goes beyond the requirements that would ensure productivity and safety to meet the needs of the architecture and interior space. illuminance level is compose to space task and space code according to KS A 3011. To be able to design the visual effect of an environment the central reference quantity has to provided the Database.

Vegetative Growth Characteristics of Phalaenopsis and Doritaenopsis Plants under Different Artificial Lighting Sources

  • Lee, Hyo Beom;An, Seong Kwang;Lee, Seung Youn;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • This study was conducted to determine the effects of artificial lighting sources on vegetative growth of Phalaenopsis and Doritaenopsis (an intergeneric hybrid of Doritis and Phalaenopsis) orchids. One - month - old plants were cultivated under fluorescent lamps, cool - white light - emitting diodes (LEDs), or warm - white LEDs at 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The blue (400 - 500 nm) : green (500 - 600 nm) : red (600 - 700 nm) : far - red (700 - 800 nm) ratios of the fluorescent lamps, cool-white LEDs, and warm-white LEDs were 1 : 1.3 : 0.8 : 0.1, 1 : 1.3 : 0.6 : 0.1, and 1 : 2.7 : 2.3 : 0.4, respectively. Each light treatment was maintained for 16 weeks in a closed plant-production system maintained at $28^{\circ}C$ with a 12 h photoperiod. The longest leaf span, as well as the leaf length and width of the uppermost mature leaf, were observed in plants treated with warm-white LEDs. Plants grown under fluorescent lamps had longer and wider leaves with a greater leaf span than plants grown under cool-white LEDs, while the maximum quantum efficiency of photosystem II was higher under cool-white LEDs. The vegetative responses affected by different lighting sources were similar at both 80 and $160{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Leaf span and root biomass were increased by the higher light intensity in both cultivars, while the relative chlorophyll content was decreased. These results indicate that relatively high intensity light can promote vegetative growth of young Phalaenopsis plants, and that warm - white LEDs, which contain a high red-light ratio, are a better lighting source for the growth of these plants than the cool-white LEDs or fluorescent lamps. These results could therefore be useful in the selection of artificial lighting to maximize vegetative growth of Phalaenopsis plants in a closed plant - production system.

The Study on Change of Lighting Color for Behavior of Residents in Living Room Space of Apartment (아파트거실공간에서의 거주자 행태를 고려한 조명색 변경에 관한 연구)

  • Jeong, Ji-Seok;Seo, Ji-Eun
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.97-104
    • /
    • 2009
  • Today, apartment is the most common residence type and various behavior occurs in living room space of apartments. Active usage of living room in modem life increases user's desire of wanting a better environment and leads to find various methods such as remodeling. At the point when considering moving or remodeling, this study focuses on the change of lighting color as it is one of the methods for initial stage with moderate price. As living room is easily influenced by lighting, providing active environment to support inhabitant's behavior through the use of various lighting sources will cut down unnecessary remodeling costs and may be the most simple method to actualize lighting environment for inhabitant's behavior. To give change with the least effort, change in artificial lighting environment was attempted with combinations of lighting color and switching on lights according to illuminating location. This study suggested the capability of changing lighting environment of previous living room area by exchanging lighting sources in lighting equipment in order to satisfy the required behaviors of inhabitant.

Landscape Analysis of the Effects of Artificial Lighting around Wetland Habitats on the Giant Water Bug Lethocerus deyrollei in Jeju Island

  • Choi, Ho;Kim, Heung-Tae;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.83-86
    • /
    • 2009
  • We conducted a landscape analysis to investigate the possibility of adverse effects of anthropogenic light sources, such as roads and residential buildings, on Lethocerus deyrollei on Jeju Island, Wetlands inhabited by L. deyrollei had fewer anthropogenic structures within a 3 km radius that had the potential to produce artificial light at night than wetlands not inhabited by L. deyrollei, In particular, the presence of artificial lights within a 1 km radius appears to reduce the probability of inhabitation by L. deyrollei, Our results suggest that artificial light sources may be critical determinants of L. deyrollei inhabitation patterns in a landscape, and that habitats that have a buffer area of at least 600$\sim$700 m radius free from residential buildings are the most appropriate habitats for L. deyrollei.

A Study on the activation of fusion technology through LED lighting industry (LED 조명산업을 통한 융복합기술의 활성화 방안에 관한 연구)

  • Heo, Man-Il;Yoo, Wang-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.1-5
    • /
    • 2012
  • By using LED optical devices and improving the efficiency of optical devices as well as lighting apparatus for humans, LED lighting industry puts the purpose of manufacturing the main products related with information, electric, large-sized LCD BLU, automobile, shipbuilding, agriculture, medical treatment, environment, and telecommunications, etc. Moreover, the main products and the industrial lighting products are manufactured with fusion, as the result, LED lighting industry provides various effects as well as sources of technology based on practical use of LED technology in order to develop the industry from the perspective of the lower price, the higher efficiency, the higher function, the deeper reliance. In the future, not only the development of new LED technology but also the fusion and combination of digital IT technologies using wire-wireless communication, sensor, controller, and artificial intelligence will be expected to create new industrial fields.

Analyzing Preprocessing for Correcting Lighting Effects in Hyperspectral Images (초분광영상의 조명효과 보정 전처리기법 분석)

  • Yeong-Sun Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.5
    • /
    • pp.785-792
    • /
    • 2023
  • Because hyperspectral imaging provides detailed spectral information across a broad range of wavelengths, it can be utilized in numerous applications, including environmental monitoring, food quality inspection, medical diagnosis, material identification, art authentication, and crime scene analysis. However, hyperspectral images often contain various types of distortions due to the environmental conditions during image acquisition, which necessitates the proper removal of these distortions through a data preprocessing process. In this study, a preprocessing method was investigated to effectively correct the distortion caused by artificial light sources used in indoor hyperspectral imaging. For this purpose, a halogen-tungsten artificial light source was installed indoors, and hyperspectral images were acquired. The acquired images were then corrected for distortion using a preprocessing that does not require complex auxiliary equipment. After the corrections were made, the results were analyzed. According to the analysis, a statistical transformation technique using mean and standard deviation with reference to a reference signal was found to be the most effective in correcting distortions caused by artificial light sources.

Utilization Efficiencies of Electric Energy and Photosynthetically Active Radiation of Lettuce Grown under Red LED, Blue LED and Fluorescent Lamps with Different Photoperiods

  • Lee, Hye In;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Purpose: This study was conducted to analyze the utilization efficiencies of electric energy and photosynthetically active radiation of lettuce grown under red LED, blue LED and fluorescent lamps with different photoperiods. Methods: Red LED with peak wavelength of 660 nm and blue LED with peak wavelength of 450 nm were used to analyze the effect of three levels of photoperiod (12/12 h, 16/8 h, 20/4 h) of LED illumination on light utilization efficiency of lettuce grown hydroponically in a closed plant production system (CPPS). Cool-white fluorescent lamps (FL) were used as the control. Photosynthetic photon flux, air temperature and relative humidity in CPPS were maintained at 230 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, $22/18^{\circ}C$ (light/darkness), and 70%, respectively. Electric conductivity and pH were controlled at 1.5-1.8 $dS{\cdot}m^{-1}$ and 5.5-6.0, respectively. The light utilization efficiency based on the chemical energy converted by photosynthesis, the accumulated electric energy consumed by artificial lighting sources, and the accumulated photosynthetically active radiation illuminated from artificial lighting sources were calculated. Results: As compared to the control, we found that the accumulated electric energy consumption decreased by 75.6% for red LED and by 70.7% for blue LED. The accumulated photosynthetically active radiation illuminated from red LED and blue LED decreased by 43.8% and 33.5%, respectively, compared with the control. The electric energy utilization efficiency (EEUE) of lettuce at growth stage 2 was 1.29-2.06% for red LED, 0.76-1.53% for blue LED, and 0.25-0.41% for FL. The photosynthetically active radiation utilization efficiency (PARUE) of lettuce was 6.25-9.95% for red LED, 3.75-7.49% for blue LED, and 2.77-4.62% for FL. EEUE and PARUE significantly increased with the increasing light period. Conclusions: From these results, illumination time of 16-20 h in a day was proposed to improve the light utilization efficiency of lettuce grown in a plant factory.

The Performance of generated Heating Energy from Interior Lighting Fixtures (실내조명의 발열량 예측에 관한 실험 연구)

  • Choi, Jong-seon;Lim, Hong-Soo;Kim, Kyung-Ah;Lee, Keum-hwan;Koo, Jae-Oh;Kim, Gon
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.27-32
    • /
    • 2010
  • Approximately 20 percentage of energy consumptions in buildings is consumed as lighting energy. Thus, most of the corporations of lighting fixture have launched low energy products. However, many researchers focused on the only luminous efficacy for energy conservation and used the evaluating tool of study. This can not gauge the precise cooling load related on generated heat of artificial lighting. In order to assess an effect of the temperature variation of lighting resources, the main purpose of this study is to predict the generated heating energy from lighting by measuring the thermal variation in scale model to reduce external noise. Also this paper used MX100 data logger to record at an interval of 1 minute for 60 minutes for the temperature of interior lightings such as incandescent lamp, fluorescent light, halogen lamp and LED lamp. As a result, LED lamp generated the lowest heat. On the other hand, incandescent lamp did the highest.

Measurement System of Photosynthetic Photon Flux Distribution and Illumination Efficiency of LED Lamps for Plant Growth

  • Lee, Jae Su;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.5
    • /
    • pp.314-318
    • /
    • 2012
  • Purpose: This study was conducted to develop a measurement system for determining photosynthetic photon flux (PPF) distribution and illumination efficiency of LED lamps. Methods: The system was composed of a linear moving sensor part (LMSP), a rotating part to turn the LMSP, a body assembly to support the rotating part, and a motor controller. The average PPF of the LED lamp with natural cooling and water cooling was evaluated using the measurement system. Results: The PPF of LED lamp with water cooling was 3.1-31.7% greater than that with natural cooling. Based on the measured value, PPF on the horizontal surface was predicted. Illumination efficiency of the LED lamp was slightly increased with water cooling by 3.4%, compared with natural cooling. A simulation program using MATLAB was developed to analyze the effects of the vertical distance from lighting sources to growing bed, lamp spacing, and number of LED lamps, on the PPF distribution on the horizontal surface. The uniformity of the PPF distribution of the LED lamps was fairly improved with 15 cm spacing, as compared to the 5 cm spacing. By simulation, PPF of $217.0{\pm}27.9{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was obtained at the vertical distance of 40 cm from six LED lamps with 12 cm spacing. This simulated PPF was compared to the measured one of $225.9{\pm}25.6{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. After continuous lighting of 346 days, the relative PPF of LED lamps with water cooling and natural cooling was decreased by 6.6% and 22.8%, respectively. Conclusions: From these results, it was concluded that the measurement system developed in this study was useful for determining PPF and illumination efficiency of artificial lighting sources including LED lamp.

Effect of LED Light Sources and Their Installation Method on the Growth of Strawberry Plants (LED 광원 및 설치조건에 따른 딸기의 생육 변화)

  • Lee, Ji Eun;Shin, Yong Seub;Cheung, Joung Do;Do, Han Woo;Kang, Young Hwa
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.106-112
    • /
    • 2015
  • The objective of this study was to examine the growth reaction of strawberry plants to the mixed red and blue LED sources and their installation method. The artificial light sources were : LED PAR(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$), LED BAR(PPFD $100{\sim}120{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) and incandescent(PPFD $2{\sim}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$) lamp. The lighting treatment was started at the first cluster flowering period as a night breaking lighting and was applied during 3 hours, between 22:00 and 01:00 every day. Plant height and leafstalk length were longer in plants treated with incandescent lamp, where as fresh and dry weight of shoot were heavier in LED PAR compared to incandescent lamp treatment. LED PAR treatment also resulted in the largest leaf area, chlorophyll content was increased by $0.36mg{\cdot}g^{-1}$ after 60 days from the starting of the artificial lighting. According to the experimental results application of 16W LED PAR lamps and W-type installation method can improve light environment in strawberry lighting culture.