• Title/Summary/Keyword: Artificial intelligence in Design

Search Result 717, Processing Time 0.028 seconds

An Ensemble Cascading Extremely Randomized Trees Framework for Short-Term Traffic Flow Prediction

  • Zhang, Fan;Bai, Jing;Li, Xiaoyu;Pei, Changxing;Havyarimana, Vincent
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1975-1988
    • /
    • 2019
  • Short-term traffic flow prediction plays an important role in intelligent transportation systems (ITS) in areas such as transportation management, traffic control and guidance. For short-term traffic flow regression predictions, the main challenge stems from the non-stationary property of traffic flow data. In this paper, we design an ensemble cascading prediction framework based on extremely randomized trees (extra-trees) using a boosting technique called EET to predict the short-term traffic flow under non-stationary environments. Extra-trees is a tree-based ensemble method. It essentially consists of strongly randomizing both the attribute and cut-point choices while splitting a tree node. This mechanism reduces the variance of the model and is, therefore, more suitable for traffic flow regression prediction in non-stationary environments. Moreover, the extra-trees algorithm uses boosting ensemble technique averaging to improve the predictive accuracy and control overfitting. To the best of our knowledge, this is the first time that extra-trees have been used as fundamental building blocks in boosting committee machines. The proposed approach involves predicting 5 min in advance using real-time traffic flow data in the context of inherently considering temporal and spatial correlations. Experiments demonstrate that the proposed method achieves higher accuracy and lower variance and computational complexity when compared to the existing methods.

User-Customized News Service by use of Social Network Analysis on Artificial Intelligence & Bigdata

  • KANG, Jangmook;LEE, Sangwon
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.131-142
    • /
    • 2021
  • Recently, there has been an active service that provides customized news to news subscribers. In this study, we intend to design a customized news service system through Deep Learning-based Social Network Service (SNS) activity analysis, applying real news and avoiding fake news. In other words, the core of this study is the study of delivery methods and delivery devices to provide customized news services based on analysis of users, SNS activities. First of all, this research method consists of a total of five steps. In the first stage, social network service site access records are received from user terminals, and in the second stage, SNS sites are searched based on SNS site access records received to obtain user profile information and user SNS activity information. In step 3, the user's propensity is analyzed based on user profile information and SNS activity information, and in step 4, user-tailored news is selected through news search based on user propensity analysis results. Finally, in step 5, custom news is sent to the user terminal. This study will be of great help to news service providers to increase the number of news subscribers.

An image analysis system Design using Arduino sensor and feature point extraction algorithm to prevent intrusion

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.

Predictiong long-term workers in the company using regression

  • SON, Ho Min;SEO, Jung Hwa
    • Korean Journal of Artificial Intelligence
    • /
    • v.10 no.1
    • /
    • pp.15-19
    • /
    • 2022
  • This study is to understand the relationship between turnover and various conditions. Turnover refers to workers moving from one company to another, which exists in various ways and forms. Currently, a large number of workers are considering many turnover rates to satisfy their income levels, distance between work and residence, and age. In addition, they consider changing jobs a lot depending on the type of work, the decision-making ability of workers, and the level of education. The company needs to accept the conditions required by workers so that competent workers can work for a long time and predict what measures should be taken to convert them into long-term workers. The study was conducted because it was necessary to predict what conditions workers must meet in order to become long-term workers by comparing various conditions and turnover using regression and decision trees. It used Microsoft Azure machines to produce results, and it found that among the various conditions, it looked for different items for long-term work. Various methods were attempted in conducting the research, and among them, suitable algorithms adopted algorithms that classify various kinds of algorithms and derive results, and among them, two decision tree algorithms were used to derive results.

Predicting concrete's compressive strength through three hybrid swarm intelligent methods

  • Zhang Chengquan;Hamidreza Aghajanirefah;Kseniya I. Zykova;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • One of the main design parameters traditionally utilized in projects of geotechnical engineering is the uniaxial compressive strength. The present paper employed three artificial intelligence methods, i.e., the stochastic fractal search (SFS), the multi-verse optimization (MVO), and the vortex search algorithm (VSA), in order to determine the compressive strength of concrete (CSC). For the same reason, 1030 concrete specimens were subjected to compressive strength tests. According to the obtained laboratory results, the fly ash, cement, water, slag, coarse aggregates, fine aggregates, and SP were subjected to tests as the input parameters of the model in order to decide the optimum input configuration for the estimation of the compressive strength. The performance was evaluated by employing three criteria, i.e., the root mean square error (RMSE), mean absolute error (MAE), and the determination coefficient (R2). The evaluation of the error criteria and the determination coefficient obtained from the above three techniques indicates that the SFS-MLP technique outperformed the MVO-MLP and VSA-MLP methods. The developed artificial neural network models exhibit higher amounts of errors and lower correlation coefficients in comparison with other models. Nonetheless, the use of the stochastic fractal search algorithm has resulted in considerable enhancement in precision and accuracy of the evaluations conducted through the artificial neural network and has enhanced its performance. According to the results, the utilized SFS-MLP technique showed a better performance in the estimation of the compressive strength of concrete (R2=0.99932 and 0.99942, and RMSE=0.32611 and 0.24922). The novelty of our study is the use of a large dataset composed of 1030 entries and optimization of the learning scheme of the neural prediction model via a data distribution of a 20:80 testing-to-training ratio.

Performance analysis of deep learning-based automatic classification of upper endoscopic images according to data construction (딥러닝 기반 상부위장관 내시경 이미지 자동분류의 데이터 구성별 성능 분석 연구)

  • Seo, Jeong Min;Lim, Sang Heon;Kim, Yung Jae;Chung, Jun Won;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.3
    • /
    • pp.451-460
    • /
    • 2022
  • Recently, several deep learning studies have been reported to automatically identify the location of diagnostic devices using endoscopic data. In previous studies, there was no design to determine whether the configuration of the dataset resulted in differences in the accuracy in which artificial intelligence models perform image classification. Studies that are based on large amounts of data are likely to have different results depending on the composition of the dataset or its proportion. In this study, we intended to determine the existence and extent of accuracy according to the composition of the dataset by compiling it into three main types using larynx, esophagus, gastroscopy, and laryngeal endoscopy images.

Verification of the Effectiveness of Artificial Intelligence Education for Cultivating AI Literacy skills in Business major students

  • SoHyun PARK
    • The Journal of Economics, Marketing and Management
    • /
    • v.11 no.6
    • /
    • pp.1-8
    • /
    • 2023
  • Purpose: In the era of the Fourth Industrial Revolution, individuals equipped with fundamental understanding and practical skills in artificial intelligence (AI) are essential. This study aimed to validate the effectiveness of AI education for enhancing AI literacy among business major student. Research design, data and methodology: Data for analyzing the effectiveness of the AI Fundamental Education Program for business major students were collected through surveys conducted at the beginning and end of the semester. Structural equation modeling was employed to perform basic statistical analyses regarding gender, grade, and prior software (SW) education duration. To validate the effectiveness of AI education, seven variables - AI interest, AI perception, data analysis/utilization, AI projects, AI literacy, AI self-efficacy, and AI learning persistence - were defined and derived. Results: All seven operationally defined variables showed statistically significant positive changes. The average differences were observed as follows: 0.47 for AI interest, 0.32 for AI perception, 0.37 for data analysis/utilization, 0.27 for AI projects, 0.25 for AI literacy, 0.39 for AI self-efficacy, and 0.41 for AI learning persistence. Statistically, AI interest exhibited the most substantial average difference. Conclusions: Through this study, the applied AI education was confirmed to enhance learners' overall competencies in AI, proving its utility and effectiveness in AI literacy education for business major students. Future research endeavors should build upon these results, focusing on ongoing studies related to AI education programs tailored to learners from diverse academic backgrounds and conducting continuous efficacy evaluations.

Evaluating the Current State of ChatGPT and Its Disruptive Potential: An Empirical Study of Korean Users

  • Jiwoong Choi;Jinsoo Park;Jihae Suh
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.1058-1092
    • /
    • 2023
  • This study investigates the perception and adoption of ChatGPT (a large language model (LLM)-based chatbot created by OpenAI) among Korean users and assesses its potential as the next disruptive innovation. Drawing on previous literature, the study proposes perceived intelligence and perceived anthropomorphism as key differentiating factors of ChatGPT from earlier AI-based chatbots. Four individual motives (i.e., perceived usefulness, ease of use, enjoyment, and trust) and two societal motives (social influence and AI anxiety) were identified as antecedents of ChatGPT acceptance. A survey was conducted within two Korean online communities related to artificial intelligence, the findings of which confirm that ChatGPT is being used for both utilitarian and hedonic purposes, and that perceived usefulness and enjoyment positively impact the behavioral intention to adopt the chatbot. However, unlike prior expectations, perceived ease-of-use was not shown to exert significant influence on behavioral intention. Moreover, trust was not found to be a significant influencer to behavioral intention, and while social influence played a substantial role in adoption intention and perceived usefulness, AI anxiety did not show a significant effect. The study confirmed that perceived intelligence and perceived anthropomorphism are constructs that influence the individual factors that influence behavioral intention to adopt and highlights the need for future research to deconstruct and explore the factors that make ChatGPT "enjoyable" and "easy to use" and to better understand its potential as a disruptive technology. Service developers and LLM providers are advised to design user-centric applications, focus on user-friendliness, acknowledge that building trust takes time, and recognize the role of social influence in adoption.

Study on an Artificial Intelligence Player of the Yutnori Game Using the Fuzzy Logic (퍼지논리를 이용한 윷놀이 인공지능 플레이어 연구)

  • Chung, Sungwook;Kim, Kinyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.1-12
    • /
    • 2017
  • Recently, the Go game has been performed between the 'AlphaGo' of the DeepMind and Lee Sedol, a famous professional Go-player of Korea, which leads to arise a lot of interests in the AI (Artificial Intelligence) research area. Based on the Fuzzy logic of the AI, we have also developed another game's AI, .i.e., the Yutnori game, one of Korean traditional board games. However, it is not easy and simple to consider all the cases of the Yutnori game since it is a non-perfect information game in terms of the AI. Thus, we have developed the Fuzzy-logic-based AI which tries to simulate humans' selections, meaning that the suggested AI has focused on the humans' choices depending on diverse situations in the Yutnori. With our extensive simulations using the suggested Yutnori AI, we have analyzed its performances with respect to 10 Yutnori situations among various scenarios. In conclusion, our suggested AI have demonstrated that 6 out of 10 situations are exactly same with the humans' choices and the rest 4 cases are also similar to that of human's, which reveals that our Fuzz-logic-based Yutnori AI can effectively simulate human's choices.

A Study on Smart Device for Open Platform Ontology Construction of Autonomous Vihicles (자율주행자동차 오픈플랫폼 온톨로지 구축을 위한 스마트디바이스 연구)

  • Choi, Byung Kwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2019
  • The 4th Industrial Revolution, intelligent automobile application technology is evolving beyond the limit of the mobile device to a variety of application software and multi-media collective technology with big data-based AI(artificial intelligence) technology. with the recent commercialization of 5G mobile communication service, artificial intelligent automobile technology, which is a fusion of automobile and IT technology, is evolving into more intelligent automobile service technology, and each multimedia platform service and application developed in such distributed environment is being developed Accordingly, application software technology developed with a single system SoC of a portable terminal device through various service technologies is absolutely required. In this paper, smart device design for ontology design of intelligent automobile open platform enables to design intelligent automobile middleware software design technology such as Android based SVC Codec and real time video and graphics processing that is not expressed in single ASIC application software technology as SoC based application designWe have experimented in smart device environment through researches, and newly designed service functions of various terminal devices provided as open platforms and application solutions in SoC environment and applied standardized interface analysis technique and proved this experiment.