• Title/Summary/Keyword: Artificial dermis

Search Result 32, Processing Time 0.017 seconds

Reconstruction of the Bone Exposed Soft Tissue Defects in Lower Extremities using Artificial dermis(AlloDerm®) (인공 진피(알로덤®)을 이용한 하지의 골이 노출된 연부 조직 결손의 재건)

  • Jeon, Man Kyung;Jang, Young Chul;Koh, Jang Hyu;Seo, Dong Kook;Lee, Jong Wook;Choi, Jai Koo
    • Archives of Plastic Surgery
    • /
    • v.36 no.5
    • /
    • pp.578-582
    • /
    • 2009
  • Purpose: In extensive deep burn of the lower limb, due to less amount of soft tissue, bone is easily exposed. When it happens, natural healing or reconstruction with skin graft only is not easy. Local flap is difficult to success, because adjacent skins are burnt or skin grafted tissues. Muscle flap or free flap are also limited and has high failure rate due to deep tissue damage. The authors acquired good outcome by performing one - stage operation on bone exposed soft tissue defect with AlloDerm$^{(R)}$(LifeCell, USA), an acellular dermal matrix producted from cadaveric skin. Methods: We studied 14 bone exposed soft tissue defect patients from March 2002 to March 2009. Average age, sex, cause of burn, location of wound, duration of admission period, and postoperative complications were studied. We removed bony cortex with burring, until conforming pinpoint bone bleeding. Then rehydrated AlloDerm$^{(R)}$(25 / 1000 inches, meshed type) was applicated on wound, and thin split thickness(6 ~ 8 / 1000 inches) skin graft was done at the immediately same operative time. Results: Average age of patients was 53.6 years(25 years ~ 80 years, SD = 16.8), and 13 patients were male(male : female = 13 : 1). Flame burn was the largest number. (Flame burn 6, electric burn 3, contact burn 4, and scalding burn 1). Tibia(8) was the most affected site. (tibia 8, toe 4, malleolus 1, and metatarsal bone 1). Thin STSC with AlloDerm$^{(R)}$ took without additional surgery in 12 of 14 patients. Partial graft loss was shown on four cases. Two cases were small in size under $1{\times}1cm$, easily healed with simple dressing, and other two cases needed additional surgery. But in case of additional surgery, granulation tissue has easily formed, and simple patch graft on AlloDerm$^{(R)}$ was enough. Average duration of admission period of patients without additional surgery was 15 days(13 ~ 19 days). Conclusion: AlloDerm$^{(R)}$ and thin split thickness skin graft give us an advantage in short surgery time and less limitations in donor site than flap surgery. Postoperative scar is less than in conventional skin graft because of more firm restoration of dermal structure with AlloDerm$^{(R)}$. We propose that AlloDerm$^{(R)}$ and thin split thickness skin graft could be a solution to bone exposured soft tissue defects in extensive deep burned patients on lower extremities, especially when adjacent tissue cannot be used for flap due to extensive burn.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.