• Title/Summary/Keyword: Artificial Neural networks

Search Result 1,317, Processing Time 0.026 seconds

STANDARDISATION OF NIR INSTRUMENTS, INFLUENCE OF THE CALIBRATION METHODS AND THE SIZE OF THE CLONING SET

  • Dardenne, Pierre;Cowe, Ian-A.;Berzaghi, Paolo;Flinn, Peter-C.;Lagerholm, Martin;Shenk, John-S.;Westerhaus, Mark-O.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1121-1121
    • /
    • 2001
  • A previous study (Berzaghi et al., 2001) evaluated the performance of 3 calibration methods, modified partial least squares (MPLS), local PLS (LOCAL) and artificial neural networks (ANN) on the prediction of the chemical composition of forages, using a large NIR database. The study used forage samples (n=25,977) from Australia, Europe (Belgium, Germany, Italy and Sweden) and North America (Canada and U.S.A) with reference values for moisture, crude protein and neutral detergent fibre content. The spectra of the samples were collected using 10 different Foss NIR Systems instruments, only some of which had been standardized to one master instrument. The aim of the present study was to evaluate the behaviour of these different calibration methods when predicting the same samples measured on different instruments. Twenty-two sealed samples of different kind of forages were measured in duplicate on seven instruments (one master and six slaves). Three sets of near infrared spectra (1100 to 2500nm) were created. The first set consisted of the spectra in their original form (unstandardized); the second set was created using a single sample standardization (Clone1); the third was created using a multiple sample procedure (Clone6). WinISI software (Infrasoft International Inc., Port Mathilda, PA, USA) was used to perform both types of standardization, Clone1 is just a photometric offset between a “master” instrument and the “slave” instrument. Clone6 modifies both the X-axis through a wavelength adjustment and the Y-axis through a simple regression wavelength by wavelength. The Clone1 procedure used one sample spectrally close to the centre of the population. The six samples used in Clone 6 were selected to cover the range of spectral variation in the sample set. The remaining fifteen samples were used to evaluate the performances of the different models. The predicted values for dry matter, protein and neutral detergent fibre from the master Instrument were considered as “reference Y values” when computing the statistics RMSEP, SEPC, R, Bias, Slope, mean GH (global Mahalanobis distance) and mean NH (neighbourhood Mahalanobis distance) for the 6 slave instruments. From the results we conclude that i) all the calibration techniques gave satisfactory results after standardization. Without standardization the predicted data from the slaves would have required slope and bias correction to produce acceptable statistics. ii) Standardization reduced the errors for all calibration methods and parameters tested, reducing not only systematic biases but also random errors. iii) Standardization removed slope effects that were significantly different from 1.0 in most of the cases. iv) Clone1 and Clone6 gave similar results except for NDF where Clone6 gave better RMSEP values than Clone1. v) GH and NH were reduced by half even with very large data sets including unstandardized spectra.

  • PDF

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

A Study on the Analysis of Apartment Price affected by Urban Infrastructure System - Electricity Substation (도시기반시설이 공동주택가격에 미치는 영향분석에 관한 연구 - 전력통신시설(변전소)을 중심으로 -)

  • Hwang, Sungduk;Jeong, Moonoh;Lee, Sangyoub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.1
    • /
    • pp.74-81
    • /
    • 2015
  • As one of urban infrastructure system, the electricity substation is critical for urban life and industrial activity as the electricity demands get higher than ever. However the substation is generally regarded as unpleasant or dangerous facility, which finally results in the continuous opposition movement by resident due to the belief of unidentified negative effect in apartment prices. Accordingly, as the scientifically objective and quantitative analysis is required to solve the social conflict, this study intends to examine the variation affected by urban infrastructure system, expecially for substation. After the independent variable defining the price of apartment and the dependent variable, which is apartment price, are identified and their spatial data has been filed, the forecasting model has been developed through the hedonic price function as well as artificial neural networks system. The research finding indicated that the spatial range affected by substation is not notable and the range of some case was applicable for less than 600m. It is expected that these research findings can be applied for establishing the one of solid cases for the analysis of economical effect to local housing market by the urban infrastructure system.

Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia (다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Sur, Chanyang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

The Estimation of Link Travel Time for the Namsan Tunnel #1 using Vehicle Detectors (지점검지체계를 이용한 남산1호터널 구간통행시간 추정)

  • Hong Eunjoo;Kim Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • As Advanced Traveler Information System(ATIS) is the kernel of the Intelligent Transportation System, it is very important how to manage data from traffic information collectors on a road and have at borough grip of the travel time's change quickly and exactly for doing its part. Link travel time can be obtained by two method. One is measured by area detection systems and the other is estimated by point detection systems. Measured travel time by area detection systems has the limitation for real time information because it Is calculated by the probe which has already passed through the link. Estimated travel time by point detection systems is calculated by the data on the same time of each. section, this is, it use the characteristic of the various cars of each section to estimate travel time. For this reason, it has the difference with real travel time. In this study, Artificial Neural Networks is used for estimating link travel time concerned about the relationship with vehicle detector data and link travel time. The method of estimating link travel time are classified according to the kind of input data and the Absolute value of error between the estimated and the real are distributed within 5$\~$15minute over 90 percent with the result of testing the method using the vehicle detector data and AVI data of Namsan Tunnel $\#$1. It also reduces Time lag of the information offered time and draws late delay generation and dissolution.

  • PDF

Information Technology and Environmental Decision-Making (정보 기술과 환경 의사 결정)

  • Woo Chung-Gyoo
    • Journal of Science and Technology Studies
    • /
    • v.1 no.2 s.2
    • /
    • pp.371-398
    • /
    • 2001
  • Sciences and technologies are the sources which have formed presently highly developed civilizations and cultures and have enhanced the quality of human lives. But we see the dark sides of them as well as the bright sides, and we have the consciousness of environmental crisis and destruction of lives caused by them. Thus were are criticisms against human-tropism or technology-tropism from nature-tropism or deep ecology. However, if people would continue to have the desire of enjoying the present quality of their lives, they should try to develop and improve pro-environmental technologies. In this vein, we have the necessity of making environmental decisions and solving environmental problems by information technologies. Since the second half of the last century, 'environment' is the key word because we have the consciousness of environment strongly. As we solve human problems by making decisions of actions, we must face with environmental decisions in order to solve our environmental problems. If we have the better understanding of the nature of information and the role of information technology, and the relation of information technology and decision-making, we are able to design environmental systems and implement their optimal interfaces of environmental components. For this purpose, we are obliged to combine several useful technologies including GIS, DSS, Knowledge-based system and artificial neural networks. Therefore the developments and cooperations of these fields in environmental decision making enables us to live in the better and comfortable surrounding in the near future.

  • PDF

The Interpretation Of Chlorophyll a And Transparency In A Lake Using LANDSAT TM Imagery (LANDSAT TM 영상을 이용한 호소의 클로로필 a및 투명도 해석에 관한 연구)

  • 이건희;전형섭;김태근;조기성
    • Korean Journal of Remote Sensing
    • /
    • v.13 no.1
    • /
    • pp.47-56
    • /
    • 1997
  • In this paper, remote sensing is used to estimate trophic state which is primary concern in a lake. In using remote sensing, this study estimated trophic state not with conventional method such as regression equations but with classification methods. As europhication is caused by the extraodinary proliferation of the algae, chlorophyll a and transparency are applied to remote sensing data.. Maximum Likelihood Classification and Minimum Distance Classification which are kinds of classification methods enabled trophic state to be confirmed in a lake. These are obtained as the result of applying remote sensing to classify trophic state in a lake. Firest, when we evaluate tropic state in a large area of water body, the application of remote sensing data can obtain more than 70% accuracies just in using basic classification methods. Second, in the aspect of classification, the accuracy of Minimum Distance Classification is usually better than that of Maximum Likelihood Classification. This result is caused that samples have normal distribution, but their numbers are a few to apply statistical method. Therefore, classification method is required such as artificial neural networks which are not influenced by statistical distribution. Third, this study enables the trophic state of water body to be analyzed and evaluated rapidly, periodically and visibly. Also, this study is good for forming proper countermeasure accompanying with trophic state progress extent in a lake and is useful for basic-data.

Machine Learning for Predicting Entrepreneurial Innovativeness (기계학습을 이용한 기업가적 혁신성 예측 모델에 관한 연구)

  • Chung, Doo Hee;Yun, Jin Seop;Yang, Sung Min
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.73-86
    • /
    • 2021
  • The primary purpose of this paper is to explore the advanced models that predict entrepreneurial innovativeness most accurately. For the first time in the field of entrepreneurship research, it presents a model that predicts entrepreneurial innovativeness based on machine learning corresponding to data scientific approaches. It uses 22,099 the Global Entrepreneurship Monitor (GEM) data from 62 countries to build predictive models. Based on the data set consisting of 27 explanatory variables, it builds predictive models that are traditional statistical methods such as multiple regression analysis and machine learning models such as regression tree, random forest, XG boost, and artificial neural networks. Then, it compares the performance of each model. It uses indicators such as root mean square error (RMSE), mean analysis error (MAE) and correlation to evaluate the performance of the model. The analysis of result is that all five machine learning models perform better than traditional methods, while the best predictive performance model was XG boost. In predicting it through XG boost, the variables with high contribution are entrepreneurial opportunities and cross-term variables of market expansion, which indicates that the type of entrepreneur who wants to acquire opportunities in new markets exhibits high innovativeness.

A Study on the Improvement of Source Code Static Analysis Using Machine Learning (기계학습을 이용한 소스코드 정적 분석 개선에 관한 연구)

  • Park, Yang-Hwan;Choi, Jin-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1131-1139
    • /
    • 2020
  • The static analysis of the source code is to find the remaining security weaknesses for a wide range of source codes. The static analysis tool is used to check the result, and the static analysis expert performs spying and false detection analysis on the result. In this process, the amount of analysis is large and the rate of false positives is high, so a lot of time and effort is required, and a method of efficient analysis is required. In addition, it is rare for experts to analyze only the source code of the line where the defect occurred when performing positive/false detection analysis. Depending on the type of defect, the surrounding source code is analyzed together and the final analysis result is delivered. In order to solve the difficulty of experts discriminating positive and false positives using these static analysis tools, this paper proposes a method of determining whether or not the security weakness found by the static analysis tools is a spy detection through artificial intelligence rather than an expert. In addition, the optimal size was confirmed through an experiment to see how the size of the training data (source code around the defects) used for such machine learning affects the performance. This result is expected to help the static analysis expert's job of classifying positive and false positives after static analysis.

Research Status of Satellite-based Evapotranspiration and Soil Moisture Estimations in South Korea (위성기반 증발산량 및 토양수분량 산정 국내 연구동향)

  • Choi, Ga-young;Cho, Younghyun
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1141-1180
    • /
    • 2022
  • The application of satellite imageries has increased in the field of hydrology and water resources in recent years. However, challenges have been encountered on obtaining accurate evapotranspiration and soil moisture. Therefore, present researches have emphasized the necessity to obtain estimations of satellite-based evapotranspiration and soil moisture with related development researches. In this study, we presented the research status in Korea by investigating the current trends and methodologies for evapotranspiration and soil moisture. As a result of examining the detailed methodologies, we have ascertained that, in general, evapotranspiration is estimated using Energy balance models, such as Surface Energy Balance Algorithm for Land (SEBAL) and Mapping Evapotranspiration with Internalized Calibration (METRIC). In addition, Penman-Monteith and Priestley-Taylor equations are also used to estimate evapotranspiration. In the case of soil moisture, in general, active (AMSR-E, AMSR2, MIRAS, and SMAP) and passive (ASCAT and SAR)sensors are used for estimation. In terms of statistics, deep learning, as well as linear regression equations and artificial neural networks, are used for estimating these parameters. There were a number of research cases in which various indices were calculated using satellite-based data and applied to the characterization of drought. In some cases, hydrological cycle factors of evapotranspiration and soil moisture were calculated based on the Land Surface Model (LSM). Through this process, by comparing, reviewing, and presenting major detailed methodologies, we intend to use these references in related research, and lay the foundation for the advancement of researches on the calculation of satellite-based hydrological cycle data in the future.