• Title/Summary/Keyword: Artificial Neural Networks(ANNs)

Search Result 162, Processing Time 0.032 seconds

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

AN ARTIFICIAL NEURAL NETWORK MODEL FOR THE CONDITION RATING OF BRIDGES

  • Jaeho Lee;Kamal Sanmugarasa;Michael Blumenstein
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.533-538
    • /
    • 2005
  • An outline of an Artificial Neural Network (ANN) model for bridge condition rating and the results of a pilot study are presented in this paper. Most BMS implementation systems involve an extensive range of data collection to operate accurately. It takes many years to effectively implement a BMS using existing methodologies. This is due to unmatched data requirements. Such problems can be overcome by adopting the ANN model presented in this paper. The objective of the proposed model is to predict bridge condition ratings using historical bridge inspection data for effective BMS operation.

  • PDF

ANN Synthesis Models Trained with Modified GA-LM Algorithm for ACPWs with Conductor Backing and Substrate Overlaying

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.696-705
    • /
    • 2012
  • Accurate synthesis models based on artificial neural networks (ANNs) are proposed to directly obtain the physical dimensions of an asymmetric coplanar waveguide with conductor backing and substrate overlaying (ACPWCBSO). First, the ACPWCBSO is analyzed with the conformal mapping technique (CMT) to obtain the training data. Then, a modified genetic-algorithm-Levenberg-Marquardt (GA-LM) algorithm is adopted to train ANNs. In the algorithm, the maximal relative error (MRE) is used as the fitness function of the chromosomes to guarantee that the MRE is small, while the mean square error is used as the error function in LM training to ensure that the average relative error is small. The MRE of ANNs trained with the modified GA-LM algorithm is less than 8.1%, which is smaller than those trained with the existing GA-LM algorithm and the LM algorithm (greater than 15%). Lastly, the ANN synthesis models are validated by the CMT analysis, electromagnetic simulation, and measurements.

Artificial Neural Network Prediction of Normalized Polarity Parameter for Various Solvents with Diverse Chemical Structures

  • Habibi-Yangjeh, Aziz
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1472-1476
    • /
    • 2007
  • Artificial neural networks (ANNs) are successfully developed for the modeling and prediction of normalized polarity parameter (ETN) of 216 various solvents with diverse chemical structures using a quantitative-structure property relationship. ANN with architecture 5-9-1 is generated using five molecular descriptors appearing in the multi-parameter linear regression (MLR) model. The most positive charge of a hydrogen atom (q+), total charge in molecule (qt), molecular volume of solvent (Vm), dipole moment (μ) and polarizability term (πI) are input descriptors and its output is ETN. It is found that properly selected and trained neural network with 192 solvents could fairly represent the dependence of normalized polarity parameter on molecular descriptors. For evaluation of the predictive power of the generated ANN, an optimized network is applied for prediction of the ETN values of 24 solvents in the prediction set, which are not used in the optimization procedure. Correlation coefficient (R) and root mean square error (RMSE) of 0.903 and 0.0887 for prediction set by MLR model should be compared with the values of 0.985 and 0.0375 by ANN model. These improvements are due to the fact that the ETN of solvents shows non-linear correlations with the molecular descriptors.

Development of the Boated Length to Diameter Correction Factor on Critical Heat Flux Using the Artificial Neural Networks

  • Lee, Yong-Ho;Chun, Tae-Hyun;Beak, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.443-448
    • /
    • 1998
  • With using artificial neural networks (ANNs), an analytical study related to the heated length effect on critical heat flux(CHF) has been carried out to make an improvement of the CHF prediction accuracy based on local condition correlations or table. It has been carried out to suggest a feasible criterion of the threshold length-to-diameter (L/D) value in which heated length could affect CHF. And within the criterion, a L/D correction factor has been developed through conventional regression. In order to validate the developed L/D correction factor, CHF experiment for various heated lengths have been carried out under low and intermediate pressure conditions. The developed threshold L/D correlation provides a new feasible criterion of L/D threshold value. The developed correction factor gives a reasonable accuracy fur the original database, showing the error of -2.18% for average and 27.75% for RMS, and promising results for new experimental data.

  • PDF

Soft Computing Optimized Models for Plant Leaf Classification Using Small Datasets

  • Priya;Jasmeen Gill
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.72-84
    • /
    • 2024
  • Plant leaf classification is an imperative task when their use in real world is considered either for medicinal purposes or in agricultural sector. Accurate identification of plants is, therefore, quite important, since there are numerous poisonous plants which if by mistake consumed or used by humans can prove fatal to their lives. Furthermore, in agriculture, detection of certain kinds of weeds can prove to be quite significant for saving crops against such unwanted plants. In general, Artificial Neural Networks (ANN) are a suitable candidate for classification of images when small datasets are available. However, these suffer from local minima problems which can be effectively resolved using some global optimization techniques. Considering this issue, the present research paper presents an automated plant leaf classification system using optimized soft computing models in which ANNs are optimized using Grasshopper Optimization algorithm (GOA). In addition, the proposed model outperformed the state-of-the-art techniques when compared with simple ANN and particle swarm optimization based ANN. Results show that proposed GOA-ANN based plant leaf classification system is a promising technique for small image datasets.

Training Sample of Artificial Neural Networks for Predicting Signalized Intersection Queue Length (신호교차로 대기행렬 예측을 위한 인공신경망의 학습자료 구성분석)

  • 한종학;김성호;최병국
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.75-85
    • /
    • 2000
  • The Purpose of this study is to analyze wether the composition of training sample have a relation with the Predictive ability and the learning results of ANNs(Artificial Neural Networks) fur predicting one cycle ahead of the queue length(veh.) in a signalized intersection. In this study, ANNs\` training sample is classified into the assumption of two cases. The first is to utilize time-series(Per cycle) data of queue length which would be detected by one detector (loop or video) The second is to use time-space correlated data(such as: a upstream feed-in flow, a link travel time, a approach maximum stationary queue length, a departure volume) which would be detected by a integrative vehicle detection systems (loop detector, video detector, RFIDs) which would be installed between the upstream node(intersection) and downstream node. The major findings from this paper is In Daechi Intersection(GangNamGu, Seoul), in the case of ANNs\` training sample constructed by time-space correlated data between the upstream node(intersection) and downstream node, the pattern recognition ability of an interrupted traffic flow is better.

  • PDF

Modeling of surface roughness in electro-discharge machining using artificial neural networks

  • Cavaleri, Liborio;Chatzarakis, George E.;Trapani, Fabio Di;Douvika, Maria G.;Roinos, Konstantinos;Vaxevanidis, Nikolaos M.;Asteris, Panagiotis G.
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.169-184
    • /
    • 2017
  • Electro-Discharge machining (EDM) is a thermal process comprising a complex metal removal mechanism. This method works by forming of a plasma channel between the tool and the workpiece electrodes leading to the melting and evaporation of the material to be removed. EDM is considered especially suitable for machining complex contours with high accuracy, as well as for materials that are not amenable to conventional removal methods. However, several phenomena can arise and adversely affect the surface integrity of EDMed workpieces. These have to be taken into account and studied in order to optimize the process. Recently, artificial neural networks (ANN) have emerged as a novel modeling technique that can provide reliable results and readily, be integrated into several technological areas. In this paper, we use an ANN, namely, the multi-layer perceptron and the back propagation network (BPNN) to predict the mean surface roughness of electro-discharge machined surfaces. The comparison of the derived results with experimental findings demonstrates the promising potential of using back propagation neural networks (BPNNs) for getting a reliable and robust approximation of the Surface Roughness of Electro-discharge Machined Components.

Multivariate Auxiliary Channel Classification using Artificial Neural Networks for LIGO Gravitational-Wave Detector

  • Oh, Sang-Hoon;Oh, John J.;Kim, Young-Min;Lee, Chang-Hwan;Vaulin, Ruslan;Hodge, Kari;Katsavounidis, Erik;Blackburn, Lindy;Biswas, Rahul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.131.2-131.2
    • /
    • 2011
  • We present performance of artificial neural network multivariate classifier in identifying non-astrophysical origin noise transients from the gravitational wave channel of Laser Interferometer Gravitational-wave Observatory (LIGO). LIGO has successfully conducted six science runs, achieving the sensitivity as planned and producing many fruitful scientific results. It has been well observed that the detector noise is non-Gaussian and non-stationary, which results in large excess of noise transients called glitches arising from instrumental and environmental artifacts. Great efforts have been committed to reduce the glitches by tuning the detector instruments and by vetoing them but further improvement is still needed. To this end, there have been efforts to incorporate data from hundreds of auxiliary, physical and environmental channels into identifying the glitches in the gravitational wave channel. We introduce a multivariate classification method using Artificial Neural Networks (ANNs) that efficiently handles large number of variables. In this poster, we present preliminary results of the application of our ANN algorithm to data from LIGO's Science Run 4 and compare its performance with conventional vetoing method.

  • PDF

Design of tensegrity structures using artificial neural networks

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.223-235
    • /
    • 2008
  • This paper focuses on the application of artificial neural networks (ANN) for optimal design of tensegrity grid as light-weight roof structures. A tensegrity grid, 2 m ${\times}$ 2 m in size, is fabricated by integrating four single tensegrity modules based on half-cuboctahedron configuration, using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. The structure is subjected to destructive load test during which continuous monitoring of the prestress levels, key deflections and strains in the struts and the cables is carried out. The monitored structure is analyzed using finite element method (FEM) and the numerical model verified and updated with the experimental observations. The paper then explores the possibility of applying ANN based on multilayered feed forward back propagation algorithm for designing the tensegrity grid structure. The network is trained using the data generated from a finite element model of the structure validated through the physical test. After training, the network output is compared with the target and reasonable agreement is found between the two. The results demonstrate the feasibility of applying the ANNs for design of the tensegrity structures.