• Title/Summary/Keyword: Artificial Neural Network Analysis (ANN)

Search Result 369, Processing Time 0.028 seconds

Maximum Torque Control of IPMSM using ALM-FNN and MFC Controller (ALM-FNN 및 MFC 제어기를 이용한 IPMSM 최대토크 제어)

  • Jung, Byung-Jin;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Kim, Do-Yeon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.26-28
    • /
    • 2009
  • This paper proposes maximum torque control of IPMSM drive using adaptive teaming mechanism-fuzzy neural network (ALM-FNN) controller, model reference adaptive fuzzy tonal(MFC) and artificial neural network(ANN). This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using ALM-FNN, MFC and ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled ALM-FNN, MFC and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the ALM-FNN, MFC and ANN controller.

  • PDF

Estimation of Concrete Durability Subjected to Freeze-Thaw Based on Artificial Neural Network (인공신경망 기반 동결융해 작용을 받는 콘크리트의 내구성능 평가)

  • Khaliunaa Darkhanbat;Inwook Heo;Seung-Ho Choi;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.144-151
    • /
    • 2023
  • In this study, a database was established by collecting experimental results on various concrete mixtures subjected to freeze-thaw cycles, based on which an artificial neural network-based prediction model was developed to estimate durability resistance of concrete. A regression analysis was also conducted to derive an equation for estimating relative dynamic modulus of elasticity subjected to freeze-thaw loads. The error rate and coefficient of determination of the proposed artificial neural network model were approximately 11% and 0.72, respectively, and the regression equation also provided very similar accuracy. Thus, it is considered that the proposed artificial neural network model and regression equation can be used for estimating relative dynamic modulus of elasticity for various concrete mixtures subjected to freeze-thaw loads.

Predicting the Greenhouse Air Humidity Using Artificial Neural Network Model Based on Principal Components Analysis (PCA에 기반을 둔 인공신경회로망을 이용한 온실의 습도 예측)

  • Owolabi, Abdulhameed B.;Lee, Jong W;Jayasekara, Shanika N.;Lee, Hyun W.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.93-99
    • /
    • 2017
  • A model was developed using Artificial Neural Networks (ANNs) based on Principal Component Analysis (PCA), to accurately predict the air humidity inside an experimental greenhouse located in Daegu (latitude $35.53^{\circ}N$, longitude $128.36^{\circ}E$, and altitude 48 m), South Korea. The weather parameters, air temperature, relative humidity, solar radiation, and carbon dioxide inside and outside the greenhouse were monitored and measured by mounted sensors. Through the PCA of the data samples, three main components were used as the input data, and the measured inside humidity was used as the output data for the ALYUDA forecaster software of the ANN model. The Nash-Sutcliff Model Efficiency Coefficient (NSE) was used to analyze the difference between the experimental and the simulated results, in order to determine the predictive power of the ANN software. The results obtained revealed the variables that affect the inside air humidity through a sensitivity analysis graph. The measured humidity agreed well with the predicted humidity, which signifies that the model has a very high accuracy and can be used for predictions based on the computed $R^2$ and NSE values for the training and validation samples.

Prediction of TBM tunnel segment lining forces using ANN technique (인공신경망 기반의 TBM 터널 세그먼트 라이닝 부재력 평가)

  • Yoo, Chung-Sik;Choi, Jung-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • This paper presents development of artificial neural network(ANN) based prediction method for section forces of TBM tunnel segment lining in an effort to develop an automatized design technique. A series of design cases were first developed and subsequently analyzed using the two-ring beam finite element model. The results were then used to form a database for use as training and validation data sets for ANN development. Using the database, optimized ANNs were developed that can readily be used to predict maximum sectional forces and their distributions. It is shown that the compute maximum section forces and their distributions by the developed ANNs are almost identical to the computed by the two-ring beam finite element model, implying that the developed ANNs can be used as design tools which expedite routine design calculation process. The results of this study indicate that the neural network model can be effectively used as a reliable and simple predictive tool for the prediction of segment sectional forces for design.

Prediction of Major Parameters of Surface Settlements Due to Tunnelling (터널굴착으로 인한 지반침하의 주요 영향 인자 예측)

  • Kim, Chang-Yong;Park, Chi-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.113-125
    • /
    • 2002
  • Although there are several empirical and semi-empirical formulae available for predicting ground surface settlement, most of them do not simultaneously take into consideration all the relevant factors, resulting in inaccurate predictions. In this study, an artificial neural network (ANN) is incorporated with 113 of monitored field results to predict surface settlement for a tunnel site with prescribed conditions. To achieve this, a format for a database of monitored field data is first proposed and then used for sorting out a variety of monitored data sets available in Korea Institute of Construction Technology. An optimal neural network model is suggested through preliminary parametric studies and introduces a concept of RSE (Yang and Zhang, 1997) in sensitivity analysis for various major factors affecting the surface settlement in tunnelling. It is seen in some examples that the RSE rationally enables to recognize the most significant factors of all the contributing factors. Two verification examples are undertaken with the trained ANN using the database created in this study. It is shown from the examples that the ANN has adequately recognized the characteristics of the monitored data sets retaining a generality fur further prediction.

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

Fault Detection and Damage Pattern Analysis of a Gearbox Using the Power Spectra Density and Artificial Neural Network (파워스펙트럼 및 신경망회로를 이용한 기어박스의 결함진단 및 결함형태 분류에 관한 연구)

  • Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.537-543
    • /
    • 2003
  • Transient vibration generated by developing localized fault in gear can be used as indicators in gear fault detection. This vibration signal suffers from the background noise such as gear meshing frequency and its harmonics and broadband noise. Thus in order to extract the information about the only gear fault from the raw vibration signal measured on the gearbox this signal is processed to reduce the background noise with many kinds of signal-processing tools. However, these signal-processing tools are often very complex and time waste. Thus. in this paper. we propose a novel approach detecting the damage of gearbox and analyzing its pattern using the raw vibration signal. In order to do this, the residual signal. which consists of the sideband components of the gear meshing frequent) and its harmonics frequencies, is extracted from the raw signal by the power spectral density (PSD) to obtain the information about the fault and is used as the input data of the artificial neural network (ANN) for analysis of the pattern of gear fault. This novel approach has been very successfully applied to the damage analysis of a laboratory gearbox.

Development of a Portable Device for Vibration Signal Analysis Based on Windows CE (Windows CE 기반 포터블 진동 신호분석기 개발)

  • 김동준;박광호;기창두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.253-256
    • /
    • 1997
  • In this study, we developed a portable device which monitors and analyzes a vibration signal happened to machines. This device is based on PDA which is smaller thant a palm of the hand, but it has powerful computing ability as much s a computer with 100MHz CPU and an operating system called Windows CE. As a preprocess for a diagnosis of a rotating machine, training artificial neural network based on PC is performed, and the device will diagnose the condition of a rotating machine using weight values as a result of the training ANN.

  • PDF

Utilization of support vector machine for prediction of fracture parameters of concrete

  • Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.9 no.3
    • /
    • pp.215-226
    • /
    • 2012
  • This article employs Support Vector Machine (SVM) for determination of fracture parameters critical stress intensity factor ($K^s_{Ic}$) and the critical crack tip opening displacement ($CTOD_c$) of concrete. SVM that is firmly based on the theory of statistical learning theory, uses regression technique by introducing ${\varepsilon}$-insensitive loss function has been adopted. The results are compared with a widely used Artificial Neural Network (ANN) model. Equations have been also developed for prediction of $K^s_{Ic}$ and $CTOD_c$. A sensitivity analysis has been also performed to investigate the importance of the input parameters. The results of this study show that the developed SVM is a robust model for determination of $K^s_{Ic}$ and $CTOD_c$ of concrete.

A Comparative Study on Forecasting Groundwater Level Fluctuations of National Groundwater Monitoring Networks using TFNM, ANN, and ANFIS (TFNM, ANN, ANFIS를 이용한 국가지하수관측망 지하수위 변동 예측 비교 연구)

  • Yoon, Pilsun;Yoon, Heesung;Kim, Yongcheol;Kim, Gyoo-Bum
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.123-133
    • /
    • 2014
  • It is important to predict the groundwater level fluctuation for effective management of groundwater monitoring system and groundwater resources. In the present study, three different time series models for the prediction of groundwater level in response to rainfall were built, those are transfer function noise model (TFNM), artificial neural network (ANN), and adaptive neuro fuzzy interference system (ANFIS). The models were applied to time series data of Boen, Cheolsan, and Hongcheon stations in National Groundwater Monitoring Network. The result shows that the model performance of ANN and ANFIS was higher than that of TFNM for the present case study. As lead time increased, prediction accuracy decreased with underestimation of peak values. The performance of the three models at Boen station was worst especially for TFNM, where the correlation between rainfall and groundwater data was lowest and the groundwater extraction is expected on account of agricultural activities. The sensitivity analysis for the input structure showed that ANFIS was most sensitive to input data combinations. It is expected that the time series model approach and results of the present study are meaningful and useful for the effective management of monitoring stations and groundwater resources.