• 제목/요약/키워드: Artificial Neural Network Algorithm

검색결과 914건 처리시간 0.026초

진화적 기법을 이용한 유체저장탱크의 슬로싱 저감 최적화 (Sloshing Reduction Optimization of Storage Tank Using Evolutionary Method)

  • 김현수;이영신;김승중;김영완
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.410-415
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is call ed sloshing, which occurs in moving vehicles with contained liquid masses, such as trucks, railroad cars, aircraft, and liquid rocket. This sloshing effect could be a severe problem in vehicle stability and control. In this study, the optimization design technique for reduction of the sloshing using evolutionary method is suggested. Two evolutionary methods are employed, respectively the artificial neural network(ANN) and genetic algorithm. An artificial neural network is used for the analysis of sloshing and genetic algorithm is adopted as optimization algorithm. As a result of optimization design, the optimized size and location of the baffle is presented

  • PDF

백삼 등급 자동판정 알고리즘 개발 (Automatic Grading Algorithm for White Ginseng)

  • 김철수;이종호;박승제;김명호
    • Journal of Biosystems Engineering
    • /
    • 제23권6호
    • /
    • pp.607-614
    • /
    • 1998
  • An automatic grading algorithm was developed to replace the manual trading of white ginseng. The algorithm consists of three consecutive stages, (a) image acquisition and preprocessing, (b) mathematical feature extraction, and (c) grade decision using artificial neural network. Mathematical features such as area ratio, mean and standard deviation of graylevel, skewness of graylevel histogram, and the number of run segment are extracted from five equally divided parts of ginseng. An artificial neural network model was used to classify white ginsengs into three categories. The performance of the algorithm was evaluated using 120 ginseng samples and the rate of successful classification was 74%.

  • PDF

수정된 하니발 구조를 이용한 신경회로망의 하드웨어 구현 (A hardware implementation of neural network with modified HANNIBAL architecture)

  • 이범엽;정덕진
    • 대한전기학회논문지
    • /
    • 제45권3호
    • /
    • pp.444-450
    • /
    • 1996
  • A digital hardware architecture for artificial neural network with learning capability is described in this paper. It is a modified hardware architecture known as HANNIBAL(Hardware Architecture for Neural Networks Implementing Back propagation Algorithm Learning). For implementing an efficient neural network hardware, we analyzed various type of multiplier which is major function block of neuro-processor cell. With this result, we design a efficient digital neural network hardware using serial/parallel multiplier, and test the operation. We also analyze the hardware efficiency with logic level simulation. (author). refs., figs., tabs.

  • PDF

인공신경망을 이용한 실험적 부싱모델링 (Empirical Bushing Model using Artificial Neural Network)

  • 손정현;유완석;박동운
    • 한국자동차공학회논문집
    • /
    • 제11권4호
    • /
    • pp.151-157
    • /
    • 2003
  • In this paper, a blackbox approach is carried out to model the nonlinear dynamic bushing model. One-axis durability test is performed to describe the mechanical behavior of typical vehicle elastomeric components. The results of the tests are used to develop an empirical bushing model with an artificial neural network. The back propagation algorithm is used to obtain the weighting factor of the neural network. Since the output for a dynamic system depends on the histories of inputs and outputs, Narendra algorithm of 'NARMAX' form is employed to consider these effects. A numerical example is carried out to verify the developed bushing model.

인공신경망기법에 상관계수를 고려한 서울 강우관측 지점 간의 강우보완 및 예측 (Rainfall Adjust and Forecasting in Seoul Using a Artificial Neural Network Technique Including a Correlation Coefficient)

  • 안정환;정희선;박인찬;조원철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.101-104
    • /
    • 2008
  • In this study, rainfall adjust and forecasting using artificial neural network(ANN) which includes a correlation coefficient is application in Seoul region. It analyzed one-hour rainfall data which has been reported in 25 region in seoul during from 2000 to 2006 at rainfall observatory by AWS. The ANN learning algorithm apply for input data that each region using cross-correlation will use the highest correlation coefficient region. In addition, rainfall adjust analyzed the minimum error based on correlation coefficient and determination coefficient related to the input region. ANN model used back-propagation algorithm for learning algorithm. In case of the back-propagation algorithm, many attempts and efforts are required to find the optimum neural network structure as applied model. This is calculated similar to the observed rainfall that the correlation coefficient was 0.98 in missing rainfall adjust at 10 region. As a result, ANN model has been for suitable for rainfall adjust. It is considered that the result will be more accurate when it includes climate data affecting rainfall.

  • PDF

Application of Artificial Neural Networks to Search for Gravitational-Wave Signals Associated with Short Gamma-Ray Bursts

  • Oh, Sang Hoon;Kim, Kyungmin;Harry, Ian W.;Hodge, Kari A.;Kim, Young-Min;Lee, Chang-Hwan;Lee, Hyun Kyu;Oh, John J.;Son, Edwin J.
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.107.1-107.1
    • /
    • 2014
  • We apply a machine learning algorithm, artificial neural network, to the search for gravitational-wave signals associated with short gamma-ray bursts. The multi-dimensional samples consisting of data corresponding to the statistical and physical quantities from the coherent search pipeline are fed into the artificial neural network to distinguish simulated gravitational-wave signals from background noise artifacts. Our result shows that the data classification efficiency at a fixed false alarm probability is improved by the artificial neural network in comparison to the conventional detection statistic. Therefore, this algorithm increases the distance at which a gravitational-wave signal could be observed in coincidence with a gamma-ray burst. We also evaluate the gravitational-wave data within a few seconds of the selected short gamma-ray bursts' event times using the trained networks and obtain the false alarm probability. We suggest that artificial neural network can be a complementary method to the conventional detection statistic for identifying gravitational-wave signals related to the short gamma-ray bursts.

  • PDF

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

Voltage Stability Prediction on Power System Network via Enhanced Hybrid Particle Swarm Artificial Neural Network

  • Lim, Zi-Jie;Mustafa, Mohd Wazir;Jamian, Jasrul Jamani
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.877-887
    • /
    • 2015
  • Rapid development of cities with constant increasing load and deregulation in electricity market had forced the transmission lines to operate near their threshold capacity and can easily lead to voltage instability and caused system breakdown. To prevent such catastrophe from happening, accurate readings of voltage stability condition is required so that preventive equipment and operators can execute security procedures to restore system condition to normal. This paper introduced Enhanced Hybrid Particle Swarm Optimization algorithm to estimate the voltage stability condition which utilized Fast Voltage Stability Index (FVSI) to indicate how far or close is the power system network to the collapse point when the reactive load in the system increases because reactive load gives the highest impact to the stability of the system as it varies. Particle Swarm Optimization (PSO) had been combined with the ANN to form the Enhanced Hybrid PSO-ANN (EHPSO-ANN) algorithm that worked accurately as a prediction algorithm. The proposed algorithm reduced serious local minima convergence of ANN but also maintaining the fast convergence speed of PSO. The results show that the hybrid algorithm has greater prediction accuracy than those comparing algorithms. High generalization ability was found in the proposed algorithm.

Prediction of Dissolved Oxygen at Anyang-stream using XG-Boost and Artificial Neural Networks

  • Keun Young Lee;Bomchul Kim;Gwanghyun Jo
    • Journal of information and communication convergence engineering
    • /
    • 제22권2호
    • /
    • pp.133-138
    • /
    • 2024
  • Dissolved oxygen (DO) is an important factor in ecosystems. However, the analysis of DO is frequently rather complicated because of the nonlinear phenomenon of the river system. Therefore, a convenient model-free algorithm for DO variable is required. In this study, a data-driven algorithm for predicting DO was developed by combining XGBoost and an artificial neural network (ANN), called ANN-XGB. To train the model, two years of ecosystem data were collected in Anyang, Seoul using the Troll 9500 model. One advantage of the proposed algorithm is its ability to capture abrupt changes in climate-related features that arise from sudden events. Moreover, our algorithm can provide a feature importance analysis owing to the use of XGBoost. The results obtained using the ANN-XGB algorithm were compared with those obtained using the ANN algorithm in the Results Section. The predictions made by ANN-XGB were mostly in closer agreement with the measured DO values in the river than those made by the ANN.

표면 근전도를 이용한 Artificial Neural Network 기반의 동작 분류 알고리즘 (Artificial Neural Network based Motion Classification Algorithm using Surface Electromyogram)

  • 정의철;김서준;송영록;이상민
    • 재활복지공학회논문지
    • /
    • 제6권1호
    • /
    • pp.67-73
    • /
    • 2012
  • 본 논문에서는 표면 근전도 신호를 사용하여 손목 움직임의 동작을 분류하기 위해 인공 신경 회로망(ANN : Artificial Neural Network)기반의 동작 분류 알고리즘을 제안한다. 손목 움직임에 무리가 없는 20~30대 성인 26명을 대상으로 척측 수근 굴근과 척측 수근 신근에 부착한 2채널의 전극으로부터 표면 근전도 신호를 취득하고, 취득한 근전도로부터 손목의 굴곡, 신전, 내전, 외전, 휴식 다섯 동작을 인식한다. 빠른 처리 속도를 위해 획득한 신호로부터 시간 영역에서의 특징점을 추출하고 ANN을 이용한 동작 분류에 사용된다. 특징점으로 DAMV, DASDV, MAV, RMS를 사용하였으며, ANN 기반의 동작 분류의 인식율은 DAMV는 98.03%, DASDV는 97.97%, MAV는 96.95%, 그리고 RMS는 96.82%의 정확도를 나타낸다.

  • PDF