본 논문은 재개발 지구의 설정 기준에 있어서 인공신경망 이론의 응용성을 적용하여 그 수치예의 결과에 대한 비교분석을 통해 인공 신경망 알고리즘의 탐색기법이 높은 범용성을 지니면서 양질의 최적해를 매우 효과적으로 찾게됨을 보였다. 그러므로 우리나라의 실정에 부합하는 합리적인 재개발지구의 판정기준을 마련할 수 있을 것으로 생각된다.
본 연구에서는 순환신경망을 이용한 댐 유입량 예측모형의 적용성 검토를 목적으로 하고 있으며, 이를 위해 소양강댐 유역 및 충주댐 유역을 대상으로 그간 댐 운영을 통해 축적된 기상 및 수문 빅데이터를 활용하여 인공신경망 모형과 엘만 순환신경망 모형을 구축하였다. 모형의 학습과 예측을 위하여 유역별 유입량, 강우량, 기온, 일조시간, 풍속자료가 입력자료로 사용되었고 10일간 일별 댐유입량 자료가 모델의 출력자료로 구조화 하여 학습을 진행한 후 검증을 목적으로 2016년 7월 ~ 2018년 6월까지 2개년에 대한 댐 유입량 예측을 수행하였다. 학습된 모형의 유입량 예측 결과를 비교분석한 결과, 소양강댐 유역에서는 인공신경망 모형과 순환신경망 모형 간 예측성능은 큰 차이를 보이지 않았으며, 충주댐 유역에서는 순환신경망 모형의 예측 결과가 인공신경망 모형에 비해 비교적 우수한 성능을 보임에 따라 엘만 순환신경망을 이용하여 댐 유입량 예측모형을 구축할 경우 예측성능은 기존의 인공신경망 모형과 비슷하거나 다소 우수할 것으로 판단된다. 또한 엘만 순환신경망은 갈수기 댐 유입량 예측에 있어서 인공신경망에 비해 예측결과의 재현성이 우수한 것으로 나타났으며, 엘만 순환신경망 학습에 있어 다중 은닉층 구조가 단일 은닉층 구조보다 예측 성능 향상에 효과적인 것으로 분석되었다.
이 연구에서는 동결융해 작용을 받는 다양한 콘크리트 배합에 대한 실험결과를 수집하여 데이터베이스를 구축하였다. 이를 바탕으로 동결융해 작용을 받는 콘크리트의 인공지능 기반 내구성능 평가모델을 개발하였으며, 회귀분석을 통해 상대동탄성계수 추정식을 도출하였다. 제안된 인공신경망 모델의 오류율과 결정계수는 각각 약 10.4%와 0.7이었으며, 회귀분석 추정식도 유사한 결과를 나타내었다. 따라서, 제안된 인공신경망 모델 및 회귀분석 추정식은 다양한 배합의 동결융해 작용을 받는 콘크리트에 대한 상대동탄성계수를 추정하는 데에 활용될 수 있을 것으로 판단된다.
The Classification of defected oil-seals using a vision system with the artificial neural network is presented. The artificial neural network fur classification consists of 27 input nodes, 10 hidden nodes, and one output node. The selection of the number of the input nodes is based on an observation that the difference among the defected, non-defected, and smeared oil-seals is greatly pronounced in the 26 step gray-scale level thresholding. The number of the hidden nodes is chosen as a result of a trade-off between accuracy and computing time. The back-propagation algorithm is used for teaching the network. The proposed network is capable of successfully classifying the defected from the smeared oil-seals which tend to be classified as the defected ones using the binary thresholding. It is envisaged that the proposed method improves the reliability and productivity of the automotive vision inspection system.
본 연구에서는 하천제방의 현장투수계수를 예측하기 위하여 낙동강과 금호강 유역에 위치한 12개소 제방의 지반물성치, 표준관입실험 그리고 현장투수실험 자료를 이용하여 인공신경망해석을 실시하였다. 총 108개의 자료 중 82%인 89개 자료를 학습단계에 그리고, 나머지 19개 자료는 예측단계에 사용하였다. 또한 그 적용성 평가를 위하여 현재 널리 사용되고 있는 경험식들에 의한 결과와 비교하였다. 그 결과 경험식을 통한 현장투수계수는 모두 실측치와의 상관계수가 0.3 이하로 나와 실측치와는 큰 차이가 있으나, 그에 비하여 신경망에 의한 예측결과는 모든 Case에서 실측치와의 상관계수가 모두 0.8이상으로 기존 경험식들에 비하여 정확한 현장투수계수를 예측을 하였다.
확한 토공량 설계를 위해서는 충분한 량의 지반조사 자료가 필요하나 비용적인 문제로 인하여 제한적인 지반조사가 수행되고 있다. 정확한 토공량 예측을 위해서 지반의 층상정보를 추정하는 것은 중요한 사항이며, 이러한 제한적인 지반조사 데이터로부터 정확한 토공량 예측을 위해서는 지구통계학적(geo-statistical) 분석방법으로 지반 층상정보를 예측할 수 있다. 또한, 기시추된 지반 층상정보를 활용하여 기계학습을 통하여 모델을 학습하여 미시추된 지반 층상정보를 예측할 수도 있는데, 본 논문에서는 인공신경망을 통하여 미시추된 지반 층상정보를 예측하고 기존의 정규 크리깅 기법과 성능을 비교한다. 이를 위하여, 84공의 지반 층상정보를 활용한다. 84공의 지반 층상정보의 데이터셋 중에서 75공을 학습 데이터셋으로 활용하였고, 나머지 9공을 검증 데이터셋으로 활용하였다. 검증 데이터셋의 실측된 지반 층상정보와 정규 크리깅 기법과 인공신경망으로 예측된 지반 층상정보를 비교 분석한다.
광역 차분위성항법시스템의 서비스 영역을 기준국 네트워크 외부로 확장하기 위해서는 전리층 보정 정보의 외삽이 필수적이다. 본 논문에서는 전리층 보정 영역 확장을 위한 인공 신경망을 설계하고 이에 대한 성능분석을 수행하였다. 인공 신경망 입력으로 사용되는 일/년별 주기함수, 태양흑점개수, 자기장 인덱스(Ap)의 개별 요소들이 전리층 외삽 추정 성능에 미치는 영향을 분석하였다. 신경망의 구성에 있어서는 은닉 층의 수 및 뉴런 개수 변화에 따른 성능 분석을 수행하였다. 분석결과를 바탕으로 신경망을 구현하고 태양활동 극대기(2014년)의 고위도와 저위도 지역에서의 전리층 추정 결과를 보였다.
인공신경망 (Artificial neural network, ANN)은 간편히 시계열 데이터를 예측할 수 있는 모델 중에 하나로 지하수위를 예측하는데 빈번히 사용되었으며, 많은 연구자들이 ANN으로 지하수위 예측에 있어서 높은 예측 신뢰성을 얻기 위하여 노력해 왔다. 본 연구에서는 ANN를 이용한 지하수위 예측 시 계절 효과를 반영하기 위한 input으로 사용되는 Dummy가 지하수위 예측 결과에 미치는 영향에 대하여 분석하였다. 정성적 및 정량적인 분석을 위하여 도해법과 상관계수, 에러 지수를 이용하였다. 분석결과 하천변 도심지역에서는 ANN의 input으로 사용된 Dummy가 오히려 예측 신뢰성을 떨어뜨리는 결과를 보였다.
암석의 물리적 특성과 슈미트반발경도 결과로부터 일축압축강도를 예측하기 위한 인공신경망 이론의 적용과 최적 모델 구성에 대하여 연구하였다. 대구지 역의 퇴적암(사암, 셰일) 시료 55개가 사용되었으며, 이들 중 인공신경망 학습을 위하여 45개가 사용되었고 학습결과의 검증을 위하여 10개의 시료가 이용되었다. 인공신경망에 의한 추산 결과와 비교하기 위하여 통계적 방법을 통한 회귀분석을 통하여 역학특성의 상관식을 도출하였으며, 인공신경망의 유효성 검증을 위하여 모델 구축 시 에 사용하지 않은 새로운 자료에 대해 예측을 실시하고 통계적 방법에 의한 결과 및 실내 시험 결과와 비교하였다. 본 연구에 사용한 인공신경망모델에는 백프로퍼게이션 학습 알고리즘(back-propagation teaming algorithm)이 적용되었으며, 인공신경망의 학습효율 및 예측능력에 영향을 미치는 입ㆍ출력층 및 은닉층의 구조, 학습율, 시스템오차율 등을 달리 하며 학습을 시행하였다. 그 결과 통계적 분석보다는 인공신경망의 학습에 의한 예측결과가 더 나은 예측능력을 나타냈다.
Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained learning data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.