This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.
The emission of dioxins from waste incinerators is one of the most important environmental problems today, It is known that optimization of waste incinerator controllers is a very difficult problem due to the complex nature of the dynamic environment within the incinerator. In this paper, we propose applying artificial neural networks to waste incinerator controllers. We show that artificial neural networks can project the emission of dioxins with a fair degree of accuracy.
Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.
Journal of Advanced Marine Engineering and Technology
/
제35권8호
/
pp.1105-1110
/
2011
본 논문은 신경회로망 기법을 이용하여 직접벡터제어 방식의 문제점을 개선하고자 하였다. 직접벡터제어 방식은 히스테리시스 밴드 폭의 변화로 인해 유도전동기 속도제어 시 맥동이 큰 단점을 가지고 있다. 이러한 문제점을 학습을 통해 오차를 감소시키는 신경회로망 기법을 사용하여 기존의 직접벡터제어 방식에서 발생하던 속도 맥동을 개선하였다.
In this study, we propose a integrated model of logistic regression, artificial neural networks, support vector machines(SVM), with case-based reasoning(CBR). To predict respondents in the direct marketing is the binary classification problem as like bankruptcy prediction, IDS, churn management and so on. To solve the binary problems, we employed logistic regression, artificial neural networks, SVM. and CBR. CBR is a problem-solving technique and shows significant promise for improving the effectiveness of complex and unstructured decision making, and we can obtain excellent results through CBR in this study. Experimental results show that the classification accuracy of integration model using CBR is superior to logistic regression, artificial neural networks and SVM. When we apply the customer response model to predict respondents in the direct marketing, we have to consider from the view point of profit/cost about the misclassification.
본 논문은 초소형 디바이스 분야에서 사용될 수 있는 배터리가 없는 초저전력 자가발전 협업 신경망 시스템을 제공하는 디바이스에 대하여 설명한다. 본 디바이스는 외부에서 전력을 공급하지 않더라도 동작하며, 다른 신경망과 협업하여 대규모의 신경망 구축이 가능하다. 해당 디바이스는 에너지 하베스팅 모듈을 탑재하고 있어 공간적 제약 없이 어느 곳에서나 자가발전을 이용하여 사용이 가능하며, 디바이스 내부의 신경만을 가지고도 동작할 수 있지만 상황에 따라 네트워크를 통해 대규모의 신경망의 일부로 사용하는 것도 가능하다.
An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.
Cardiac disease is the most common cause of death worldwide. Therefore, detection and classification of electrocardiogram (ECG) signals are crucial to extend life expectancy. In this study, we aimed to implement an artificial intelligence signal recognition system in field programmable gate array (FPGA), which can recognize patterns of bio-signals such as ECG in edge devices that require batteries. Despite the increment in classification accuracy, deep learning models require exorbitant computational resources and power, which makes the mapping of deep neural networks slow and implementation on wearable devices challenging. To overcome these limitations, spiking neural networks (SNNs) have been applied. SNNs are biologically inspired, event-driven neural networks that compute and transfer information using discrete spikes, which require fewer operations and less complex hardware resources. Thus, they are more energy-efficient compared to other artificial neural networks algorithms.
We introduce high-order Hopfield neural networks with Leakage delays. Furthermore, we study the uniqueness and existence of Hopfield artificial neural networks having the weighted pseudo almost periodic forcing terms on finite delay. Our analysis is based on the differential inequality techniques and the Banach contraction mapping principle.
A evaluation for the strength of rock includes a lot of uncertainty due to existence of discontinuity surface and weakness plain in the rock mass, so essential test results and other data for the resonable strength analysis are absolutely insufficient. Therefore, a analytical technique to reduce such uncertainty can be required. A probabilistic analysis technique has mainly to make up for the uncertainty to investigate the strength of rock mass. Recently, a artificial neural networks, as a more newly analysis method to solve several problems in the existing analysis methodology, trends to apply to study on the rock strength. In this study the unconfined compressive strength from basic physical property values of sedimentary rock, black shale and red shale, distributed in Daegu metropolitan area is estimated, using the artificial neural networks. And the applicability of the analysis method is investigated. From the results, it is confirmed that the unconfined compressive strength of the sedimentary rock can be easily and efficiently predicted by the analysis technique with the artificial neural networks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.