• Title/Summary/Keyword: Artificial Intelligent Security

Search Result 86, Processing Time 0.024 seconds

Implementation of Intelligent and Human-Friendly Home Service Robot (인간 친화적인 가정용 지능형 서비스 로봇 구현)

  • Choi, Woo-Kyung;Kim, Seong-Joo;Kim, Jong-Soo;Jeo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.720-725
    • /
    • 2004
  • Robot systems have applied to manufacturing or industrial field for reducing the need for human presence in dangerous and/or repetitive tasks. However, robot applications are transformed from industrial field to human life in recent tendency Nowadays, final goal of robot is to make a intelligent robot that can understand what human say and learn by itself and have internal emotion. For example Home service robots are able to provice functions such as security, housework, entertainment, education and secretary To provide various functions, home robots need to recognize human`s requirement and environment, and it is indispensable to use artificial intelligence technology for implementation of home robots. In this paper, implemented robot system takes data from several sensors and fuses the data to recognize environment information. Also, it can select a proper behavior for environment using soft computing method. Each behavior is composed with intuitive motion and sound in order to let human realize robot behavior well.

A Study on the Model for Preemptive Intrusion Response in the era of the Fourth Industrial Revolution (4차 산업혁명 시대의 선제적 위협 대응 모델 연구)

  • Hyang-Chang Choi
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.27-42
    • /
    • 2022
  • In the era of the Fourth Industrial Revolution, digital transformation to increase the effectiveness of industry is becoming more important to achieving the goal of industrial innovation. The digital new deal and smart defense are required for digital transformation and utilize artificial intelligence, big data analysis technology, and the Internet of Things. These changes can innovate the industrial fields of national defense, society, and health with new intelligent services by continuously expanding cyberspace. As a result, work productivity, efficiency, convenience, and industrial safety will be strengthened. However, the threat of cyber-attack will also continue to increase due to expansion of the new domain of digital transformation. This paper presents the risk scenarios of cyber-attack threats in the Fourth Industrial Revolution. Further, we propose a preemptive intrusion response model to bolster the complex security environment of the future, which is one of the fundamental alternatives to solving problems relating to cyber-attack. The proposed model can be used as prior research on cyber security strategy and technology development for preemptive response to cyber threats in the future society.

Clock Glitch-based Fault Injection Attack on Deep Neural Network (Deep Neural Network에 대한 클럭 글리치 기반 오류 주입 공격)

  • Hyoju Kang;Seongwoo Hong;Youngju Lee;Jeacheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.5
    • /
    • pp.855-863
    • /
    • 2024
  • The use of Deep Neural Network (DNN) is gradually increasing in various fields due to their high efficiency in data analysis and prediction. However, as the use of deep neural networks becomes more frequent, the security threats associated with them are also increasing. In particular, if a fault occurs in the forward propagation process and activation function that can directly affect the prediction of deep neural network, it can have a fatal damage on the prediction accuracy of the model. In this paper, we performed some fault injection attacks on the forward propagation process of each layer except the input layer in a deep neural network and the Softmax function used in the output layer, and analyzed the experimental results. As a result of fault injection on the MNIST dataset using a glitch clock, we confirmed that faut injection on into the iteration statements can conduct deterministic misclassification depending on the network parameters.

A Study on the Development of LDA Algorithm-Based Financial Technology Roadmap Using Patent Data

  • Koopo KWON;Kyounghak LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.17-24
    • /
    • 2024
  • This study aims to derive a technology development roadmap in related fields by utilizing patent documents of financial technology. To this end, patent documents are extracted by dragging technical keywords from prior research and related reports on financial technology. By applying the TF-IDF (Term Frequency-Inverse Document Frequency) technique in the extracted patent document, which is a text mining technique, to the extracted patent documents, the Latent Dirichlet Allocation (LDA) algorithm was applied to identify the keywords and identify the topics of the core technologies of financial technology. Based on the proportion of topics by year, which is the result of LDA, promising technology fields and convergence fields were identified through trend analysis and similarity analysis between topics. A first-stage technology development roadmap for technology field development and a second-stage technology development roadmap for convergence were derived through network analysis about the technology data-based integrated management system of the high-dimensional payment system using RF and intelligent cards, as well as the security processing methodology for data information and network payment, which are identified financial technology fields. The proposed method can serve as a sufficient reason basis for developing financial technology R&D strategies and technology roadmaps.

Intrusion Detection System of Network Based on Biological Immune System (생체 면역계를 이용한 네트워크 침입탐지 시스템)

  • Sim, Kwee-Bo;Yang, Jae-Won;Lee, Dong-Wook;Seo, Dong-Il;Choi, Yang-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.411-416
    • /
    • 2002
  • Recently, the trial and success of malicious cyber attacks has been increased rapidly with spreading of Internet and the activation of a internet shopping mall and the supply of an online internet, so it is expected to make a problem more and more. Currently, the general security system based on Internet couldn't cope with the attack properly, if ever, other regular systems have depended on common softwares to cope with the attack. In this paper, we propose the positive selection mechanism and negative selection mechanism of T-cell, which is the biological distributed autonomous system, to develop the self/non-self recognition algorithm, the anomalous behavior detection algorithm, and AIS (Artificial Immune System) that is easy to be concrete on the artificial system. The proposed algorithm can cope with new intrusion as well as existing one to intrusion detection system in the network environment.

Convolutional Neural Network with Expert Knowledge for Hyperspectral Remote Sensing Imagery Classification

  • Wu, Chunming;Wang, Meng;Gao, Lang;Song, Weijing;Tian, Tian;Choo, Kim-Kwang Raymond
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3917-3941
    • /
    • 2019
  • The recent interest in artificial intelligence and machine learning has partly contributed to an interest in the use of such approaches for hyperspectral remote sensing (HRS) imagery classification, as evidenced by the increasing number of deep framework with deep convolutional neural networks (CNN) structures proposed in the literature. In these approaches, the assumption of obtaining high quality deep features by using CNN is not always easy and efficient because of the complex data distribution and the limited sample size. In this paper, conventional handcrafted learning-based multi features based on expert knowledge are introduced as the input of a special designed CNN to improve the pixel description and classification performance of HRS imagery. The introduction of these handcrafted features can reduce the complexity of the original HRS data and reduce the sample requirements by eliminating redundant information and improving the starting point of deep feature training. It also provides some concise and effective features that are not readily available from direct training with CNN. Evaluations using three public HRS datasets demonstrate the utility of our proposed method in HRS classification.

Operators that Reduce Work and Information Overload

  • Sabir Abbas;Shane zahra;Muhammad Asif;khalid masood
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.65-70
    • /
    • 2023
  • The "information roadway" will give us an impact of new PC based assignments and administrations, yet the unusualness of this new condition will ask for another style of human-PC association, where the PC transforms into a sharp, dynamic and customized partner. Interface administrators are PC programs that use Artificial Intelligence frameworks to give dynamic help to a customer with PC based errands. Operators drastically change the present client encounter, through the similitude that a specialist can go about as an individual collaborator. The operator procures its capability by gaining from the client and from specialists helping different clients. A couple of model administrators have been gathered using this methodology, including authorities that give customized help with meeting planning, electronic mail taking care of, Smart Personal Assistant and choice of diversion. Operators help clients in a scope of various ways: they perform assignments for the client's sake; they can prepare or educate the client, they enable diverse clients to work together and they screen occasions and methods.

An Intelligent System for Filling of Missing Values in Weather Data

  • Maqsood Ali Solangi;Ghulam Ali Mallah;Shagufta Naz;Jamil Ahmed Chandio;Muhammad Bux Soomro
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.95-99
    • /
    • 2023
  • Recently Machine Learning has been considered as one of the active research areas of Computer Science. The various Artificial Intelligence techniques are used to solve the classification problems of environmental sciences, biological sciences, and medical sciences etc. Due to the heterogynous and malfunctioning weather sensors a considerable amount of noisy data with missing is generated, which is alarming situation for weather prediction stockholders. Filling of these missing values with proper method is really one of the significant problems. The data must be cleaned before applying prediction model to collect more precise & accurate results. In order to solve all above stated problems, this research proposes a novel weather forecasting system which consists upon two steps. The first step will prepare data by reducing the noise; whereas a decision model is constructed at second step using regression algorithm. The Confusion Matrix will be used to evaluation the proposed classifier.

A Design of Estimate-information Filtering System using Artificial Intelligent Technology (인공지능 기술을 활용한 부동산 허위매물 필터링 시스템)

  • Moon, Jeong-Kyung
    • Convergence Security Journal
    • /
    • v.21 no.1
    • /
    • pp.115-120
    • /
    • 2021
  • An O2O-based real estate brokerage web sites or apps are increasing explosively. As a result, the environment has been changed from the existing offline-based real estate brokerage environment to the online-based environment, and consumers are getting very good feelings in terms of time, cost, and convenience. However, behind the convenience of online-based real estate brokerage services, users often suffer time and money damage due to false information or malicious false information. Therefore, in this study, in order to reduce the damage to consumers that may occur in the O2O-based real estate brokerage service, we designed a false property information filtering system that can determine the authenticity of registered property information using artificial intelligence technology. Through the proposed research method, it was shown that not only the authenticity of the property information registered in the online real estate service can be determined, but also the temporal and financial damage of consumers can be reduced.

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.