• Title/Summary/Keyword: Artificial Intelligence in cardiology

Search Result 11, Processing Time 0.018 seconds

Application and Potential of Artificial Intelligence in Heart Failure: Past, Present, and Future

  • Minjae Yoon;Jin Joo Park;Taeho Hur;Cam-Hao Hua;Musarrat Hussain;Sungyoung Lee;Dong-Ju Choi
    • International Journal of Heart Failure
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 2024
  • The prevalence of heart failure (HF) is increasing, necessitating accurate diagnosis and tailored treatment. The accumulation of clinical information from patients with HF generates big data, which poses challenges for traditional analytical methods. To address this, big data approaches and artificial intelligence (AI) have been developed that can effectively predict future observations and outcomes, enabling precise diagnoses and personalized treatments of patients with HF. Machine learning (ML) is a subfield of AI that allows computers to analyze data, find patterns, and make predictions without explicit instructions. ML can be supervised, unsupervised, or semi-supervised. Deep learning is a branch of ML that uses artificial neural networks with multiple layers to find complex patterns. These AI technologies have shown significant potential in various aspects of HF research, including diagnosis, outcome prediction, classification of HF phenotypes, and optimization of treatment strategies. In addition, integrating multiple data sources, such as electrocardiography, electronic health records, and imaging data, can enhance the diagnostic accuracy of AI algorithms. Currently, wearable devices and remote monitoring aided by AI enable the earlier detection of HF and improved patient care. This review focuses on the rationale behind utilizing AI in HF and explores its various applications.

Human Cardiac Abnormality Detection Using Deep Learning with Heart Sound in Newborn Children

  • Eashita Wazed;Hieyong Jeong
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.461-462
    • /
    • 2024
  • In pediatric healthcare, early detection of cardiovascular diseases in newborns is crucial. Analyzing heart sounds using stethoscopes can be subjective and reliant on physician expertise, potentially leading to delayed diagnosis. There is a need for a simple method that can help even inexperienced doctors detect heart abnormalities without an electrocardiogram or ultrasound. Automated heart sound diagnosis systems can aid clinicians by providing accurate and early detection of abnormal heartbeats. To address this, we developed an intelligent deep-learning model incorporating CNN and LSTM to detect heart abnormalities based on artificial intelligence using heart sound data from stethoscope recordings. Our research achieved a high accuracy rate of 97.8%. Using audio data to introduce advanced models for cardiac abnormalities in children is essential for enhancing early detection and intervention in pediatric cardiovascular healthcare.

Deep Learning-Based Lumen and Vessel Segmentation of Intravascular Ultrasound Images in Coronary Artery Disease

  • Gyu-Jun Jeong;Gaeun Lee;June-Goo Lee;Soo-Jin Kang
    • Korean Circulation Journal
    • /
    • v.54 no.1
    • /
    • pp.30-39
    • /
    • 2024
  • Background and Objectives: Intravascular ultrasound (IVUS) evaluation of coronary artery morphology is based on the lumen and vessel segmentation. This study aimed to develop an automatic segmentation algorithm and validate the performances for measuring quantitative IVUS parameters. Methods: A total of 1,063 patients were randomly assigned, with a ratio of 4:1 to the training and test sets. The independent data set of 111 IVUS pullbacks was obtained to assess the vessel-level performance. The lumen and external elastic membrane (EEM) boundaries were labeled manually in every IVUS frame with a 0.2-mm interval. The Efficient-UNet was utilized for the automatic segmentation of IVUS images. Results: At the frame-level, Efficient-UNet showed a high dice similarity coefficient (DSC, 0.93±0.05) and Jaccard index (JI, 0.87±0.08) for lumen segmentation, and demonstrated a high DSC (0.97±0.03) and JI (0.94±0.04) for EEM segmentation. At the vessel-level, there were close correlations between model-derived vs. experts-measured IVUS parameters; minimal lumen image area (r=0.92), EEM area (r=0.88), lumen volume (r=0.99) and plaque volume (r=0.95). The agreement between model-derived vs. expert-measured minimal lumen area was similarly excellent compared to the experts' agreement. The model-based lumen and EEM segmentation for a 20-mm lesion segment required 13.2 seconds, whereas manual segmentation with a 0.2-mm interval by an expert took 187.5 minutes on average. Conclusions: The deep learning models can accurately and quickly delineate vascular geometry. The artificial intelligence-based methodology may support clinicians' decision-making by real-time application in the catheterization laboratory.

Identifying Atrial Fibrillation With Sinus Rhythm Electrocardiogram in Embolic Stroke of Undetermined Source: A Validation Study With Insertable Cardiac Monitors

  • Ki-Hyun Jeon;Jong-Hwan Jang;Sora Kang;Hak Seung Lee;Min Sung Lee;Jeong Min Son;Yong-Yeon Jo;Tae Jun Park;Il-Young Oh;Joon-myoung Kwon;Ji Hyun Lee
    • Korean Circulation Journal
    • /
    • v.53 no.11
    • /
    • pp.758-771
    • /
    • 2023
  • Background and Objectives: Paroxysmal atrial fibrillation (AF) is a major potential cause of embolic stroke of undetermined source (ESUS). However, identifying AF remains challenging because it occurs sporadically. Deep learning could be used to identify hidden AF based on the sinus rhythm (SR) electrocardiogram (ECG). We combined known AF risk factors and developed a deep learning algorithm (DLA) for predicting AF to optimize diagnostic performance in ESUS patients. Methods: A DLA was developed to identify AF using SR 12-lead ECG with the database consisting of AF patients and non-AF patients. The accuracy of the DLA was validated in 221 ESUS patients who underwent insertable cardiac monitor (ICM) insertion to identify AF. Results: A total of 44,085 ECGs from 12,666 patient were used for developing the DLA. The internal validation of the DLA revealed 0.862 (95% confidence interval, 0.850-0.873) area under the curve (AUC) in the receiver operating curve analysis. In external validation data from 221 ESUS patients, the diagnostic accuracy of DLA and AUC were 0.811 and 0.827, respectively, and DLA outperformed conventional predictive models, including CHARGE-AF, C2HEST, and HATCH. The combined model, comprising atrial ectopic burden, left atrial diameter and the DLA, showed excellent performance in AF prediction with AUC of 0.906. Conclusions: The DLA accurately identified paroxysmal AF using 12-lead SR ECG in patients with ESUS and outperformed the conventional models. The DLA model along with the traditional AF risk factors could be a useful tool to identify paroxysmal AF in ESUS patients.

Aortic Stenosis: New Insights in Diagnosis, Treatment, and Prevention

  • Saki Ito;Jae K. Oh
    • Korean Circulation Journal
    • /
    • v.52 no.10
    • /
    • pp.721-736
    • /
    • 2022
  • Aortic stenosis (AS) is one of the most common valvular heart diseases and the number of patients with AS is expected to increase globally as the older population is growing fast. Since the majority of patients are elderly, AS is no longer a simple valvular heart disease of left ventricular outflow obstruction but is accompanied by other cardiac and comorbid conditions. Because of the significant variations of the disease, identifying patients at high risk and even earlier detection of patients with AS before developing symptomatic severe AS is becoming increasingly important. With the proven of efficacy and safety of transcatheter aortic valve replacement (TAVR) in the severe AS population, there is a growing interest in applying TAVR in those with less than severe AS. A medical therapy to reduce or prevent the progression in AS is actively investigated by several randomized control trials. In this review, we will summarize the most recent findings in AS and discuss potential future management strategies of patients with AS.

Fully Automatic Coronary Calcium Score Software Empowered by Artificial Intelligence Technology: Validation Study Using Three CT Cohorts

  • June-Goo Lee;HeeSoo Kim;Heejun Kang;Hyun Jung Koo;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1764-1776
    • /
    • 2021
  • Objective: This study aimed to validate a deep learning-based fully automatic calcium scoring (coronary artery calcium [CAC]_auto) system using previously published cardiac computed tomography (CT) cohort data with the manually segmented coronary calcium scoring (CAC_hand) system as the reference standard. Materials and Methods: We developed the CAC_auto system using 100 co-registered, non-enhanced and contrast-enhanced CT scans. For the validation of the CAC_auto system, three previously published CT cohorts (n = 2985) were chosen to represent different clinical scenarios (i.e., 2647 asymptomatic, 220 symptomatic, 118 valve disease) and four CT models. The performance of the CAC_auto system in detecting coronary calcium was determined. The reliability of the system in measuring the Agatston score as compared with CAC_hand was also evaluated per vessel and per patient using intraclass correlation coefficients (ICCs) and Bland-Altman analysis. The agreement between CAC_auto and CAC_hand based on the cardiovascular risk stratification categories (Agatston score: 0, 1-10, 11-100, 101-400, > 400) was evaluated. Results: In 2985 patients, 6218 coronary calcium lesions were identified using CAC_hand. The per-lesion sensitivity and false-positive rate of the CAC_auto system in detecting coronary calcium were 93.3% (5800 of 6218) and 0.11 false-positive lesions per patient, respectively. The CAC_auto system, in measuring the Agatston score, yielded ICCs of 0.99 for all the vessels (left main 0.91, left anterior descending 0.99, left circumflex 0.96, right coronary 0.99). The limits of agreement between CAC_auto and CAC_hand were 1.6 ± 52.2. The linearly weighted kappa value for the Agatston score categorization was 0.94. The main causes of false-positive results were image noise (29.1%, 97/333 lesions), aortic wall calcification (25.5%, 85/333 lesions), and pericardial calcification (24.3%, 81/333 lesions). Conclusion: The atlas-based CAC_auto empowered by deep learning provided accurate calcium score measurement as compared with manual method and risk category classification, which could potentially streamline CAC imaging workflows.

Preparations for the Assessment of COVID-19 Infection and Long-Term Cardiovascular Risk

  • Jaehun Jung
    • Korean Circulation Journal
    • /
    • v.52 no.11
    • /
    • pp.808-813
    • /
    • 2022
  • Studies showing that coronavirus disease 2019 (COVID-19) is associated with an increased risk of cardiovascular disease continue to be published. However, studies on how long the overall cardiovascular risk increases after COVID-19 and the magnitude of its long-term effects have only been confirmed recently. This is partly because the distinction between cardiovascular risk as an acute complication of COVID-19 or post-acute cardiovascular manifestations is ambiguous. Long-COVID has arisen as an important topic in the second half of the pandemic. This term indicates that symptoms persist for more than two 2 months; following three months of SARS-CoV-2 infection and cannot be explained by other medical conditions. Despite the agreement of these international organizations and experts, it is difficult to define whether there is sufficient medical evidence to prove the existence of long-COVID. However, the Korean government and Korea Disease Control and Prevention Agency (KDCA) are preparing a new platform to assess the long-term impact of COVID-19. Using this data, a prospective cohort of 10,000 confirmed COVID-19 cases will be established. This cohort will be linked with claims data from the National Health Insurance Services (NHIS) and it is expected that increased real-world evidence of long-COVID will be accumulated.

Generation of High-Resolution Chest X-rays using Multi-scale Conditional Generative Adversarial Network with Attention (주목 메커니즘 기반의 멀티 스케일 조건부 적대적 생성 신경망을 활용한 고해상도 흉부 X선 영상 생성 기법)

  • Ann, Kyeongjin;Jang, Yeonggul;Ha, Seongmin;Jeon, Byunghwan;Hong, Youngtaek;Shim, Hackjoon;Chang, Hyuk-Jae
    • Journal of Broadcast Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-12
    • /
    • 2020
  • In the medical field, numerical imbalance of data due to differences in disease prevalence is a common problem. It reduces the performance of a artificial intelligence network, leading to difficulties in learning a network with good performance. Recently, generative adversarial network (GAN) technology has been introduced as a way to address this problem, and its ability has been demonstrated by successful applications in various fields. However, it is still difficult to achieve good results in solving problems with performance degraded by numerical imbalances because the image resolution of the previous studies is not yet good enough and the structure in the image is modeled locally. In this paper, we propose a multi-scale conditional generative adversarial network based on attention mechanism, which can produce high resolution images to solve the numerical imbalance problem of chest X-ray image data. The network was able to produce images for various diseases by controlling condition variables with only one network. It's efficient and effective in that the network don't need to be learned independently for all disease classes and solves the problem of long distance dependency in image generation with self-attention mechanism.