• Title/Summary/Keyword: Artificial Intelligence Acceptance

Search Result 67, Processing Time 0.024 seconds

A study on the factors of elementary school teachers' intentions to use AI math learning system: Focusing on the case of TocToc-Math (초등교사들의 인공지능 활용 수학수업 지원시스템 사용 의도에 영향을 미치는 요인 연구: <똑똑! 수학탐험대> 사례를 중심으로)

  • Kyeong-Hwa Lee;Sheunghyun Ye;Byungjoo Tak;Jong Hyeon Choi;Taekwon Son;Jihyun Ock
    • The Mathematical Education
    • /
    • v.63 no.2
    • /
    • pp.335-350
    • /
    • 2024
  • This study explored the factors that influence elementary school teachers' intention to use an artificial intelligence (AI) math learning system and analyzed the interactions and relationships among these factors. Based on the technology acceptance model, perceived usefulness for math learning, perceived ease of use of AI, and attitude toward using AI were analyzed as the main variables. Data collected from a survey of 215 elementary school teachers was used to analyze the relationships between the variables using structural equation modeling. The results of the study showed that perceived usefulness for math learning and perceived ease of use of AI significantly influenced teachers' positive attitudes toward AI math learning systems, and positive attitudes significantly influenced their intention to use AI. These results suggest that it is important to positively change teachers' perceptions of the effectiveness of using AI technology in mathematics instruction and their attitudes toward AI technology in order to effectively adopt and utilize AI-based mathematics education tools in the future.

Characterizing Strategy of Emotional sympathetic Robots in Animation and Movie - Focused on Appearance and Behavior tendency Analysis - (애니메이션 및 영화에 등장하는 정서교감형 로봇의 캐릭터라이징 전략 - 외형과 행동 경향성 분석을 중심으로 -)

  • Ryu, Beom-Yeol;Yang, Se-Hyeok
    • Cartoon and Animation Studies
    • /
    • s.48
    • /
    • pp.85-116
    • /
    • 2017
  • The purpose of this study is to analyze conditions that robots depicted in cinematographic works like animations or movies sympathize with and form an attachment with the nuclear person and organize characterizing strategies for emotional sympathetic robots. Along with the development of technology, the areas of artificial intelligence and robots are no longer considered to belong to science fiction but as realistic issues. Therefore, this author assumes that the expressive characteristics of emotional sympathetic robots created by cinematographic works should be used as meaningful factors in expressively embodying human-friendly service robots to be distributed widely afterwards, that is, in establishing the features of characters. To lay the grounds for it, this research has begun. As the subjects of analysis, this researcher has chosen robot characters whose emotional intimacy with the main person is clearly observed among those found in movies and animations produced after the 1920 when robot's contemporary concept was declared. Also, to understand robots' appearance and behavioral tendency, this study (1) has classified robots' external impressions into five types (human-like, cartoon, tool-like, artificial bring, pet or creature) and (2) has classified behavioral tendencies considered to be the outer embodiment of personality by using DiSC, the tool to diagnose behavioral patterns. Meanwhile, it has been observed that robots equipped with high emotional intimacy are all strongly independent about their duties and indicate great emotional acceptance. Therefore, 'influence' and 'Steadiness' types show great emotional acceptance, the influencing type tends to be highly independent, and the 'Conscientiousness' type tends to indicate less emotional acceptance and independency in general. Yet, according to the analysis on external impressions, appearance factors hardly have any significant relationship with emotional sympathy. It implies that regarding the conditions of robots equipped with great emotional sympathy, emotional sympathy grounded on communication exerts more crucial effects than first impression similarly to the process of forming interpersonal relationship in reality. Lastly, to study the characters of robots, it is absolutely needed to have consilient competence embracing different areas widely. This author also has felt that only with design factors or personality factors, it is hard to estimate robot characters and also analyze a vast amount of information demanded in sympathy with humans entirely. However, this researcher will end this thesis as the foundation for it expecting that the general artistic value of animations can be used preciously afterwards in developing robots that have to be studied interdisciplinarily.

The effect of perceived social exclusion on warm lighting preferences (지각된 사회적 배제가 따뜻한 조명 선호에 미치는 효과)

  • Lee, Guk-Hee
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.5-12
    • /
    • 2019
  • Social exclusion, which does not fulfill the desire for respect as one of the most basic human desires, makes those who perceive themselves to be socially excluded seek physical warmth. However, very few studies have examined whether this phenomenon-wherein social exclusion develops a preference for warmth-can be generalized to the emotional or symbolic aspects, such as the color of lighting. This study aimed to verify the effects of perceived social exclusion on warm lighting preferences, and two experiments were performed for this purpose. In Experiment-1, participants who were respected by people the previous day were assigned to the group that did not perceive social exclusion (non-perceived social exclusion group), and those who were not respected were assigned to the group that perceived social exclusion (perceived social exclusion group). Following this, their preference for warm lighting (3000K), neutral lighting (4000K), and cold lighting (6000K) was measured. The results showed that the perceived social exclusion group had a stronger preference for warm lighting and a weaker preference for cold lighting than did their counterparts. Moreover, the perceived social exclusion group showed a strong preference for warm lighting over neutral lighting; they also showed a weak preference for cold lighting. In Experiment-2, after assigning the participants into groups as in Experiment-1, the participants' preference for a space with warm lighting, neutral lighting, and cold lighting was measured. The results showed that the perceived social exclusion group had a stronger preference for the space with warm lighting and a weaker preference for cold lighting than did their counterparts. Further, the perceived social exclusion group showed a strong preference for the space with warm lighting over the space with neutral lighting; they also showed a weak preference for the space with cold lighting. The findings of this study have implications that can be applied to designing living spaces for people who experience social exclusion, such as handicapped individuals, multicultural families, or immigrant workers, as well as developing artificial intelligence services and cyber-friend characters for this demographic.

A Study on the Development of Embedded Serial Multi-modal Biometrics Recognition System (임베디드 직렬 다중 생체 인식 시스템 개발에 관한 연구)

  • Kim, Joeng-Hoon;Kwon, Soon-Ryang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • The recent fingerprint recognition system has unstable factors, such as copy of fingerprint patterns and hacking of fingerprint feature point, which mali cause significant system error. Thus, in this research, we used the fingerprint as the main recognition device and then implemented the multi-biometric recognition system in serial using the speech recognition which has been widely used recently. As a multi-biometric recognition system, once the speech is successfully recognized, the fingerprint recognition process is run. In addition, speaker-dependent DTW(Dynamic Time Warping) algorithm is used among existing speech recognition algorithms (VQ, DTW, HMM, NN) for effective real-time process while KSOM (Kohonen Self-Organizing feature Map) algorithm, which is the artificial intelligence method, is applied for the fingerprint recognition system because of its calculation amount. The experiment of multi-biometric recognition system implemented in this research showed 2 to $7\%$ lower FRR (False Rejection Ratio) than single recognition systems using each fingerprints or voice, but zero FAR (False Acceptance Ratio), which is the most important factor in the recognition system. Moreover, there is almost no difference in the recognition time(average 1.5 seconds) comparing with other existing single biometric recognition systems; therefore, it is proved that the multi-biometric recognition system implemented is more efficient security system than single recognition systems based on various experiments.

The study on the diagnosis and measurement of post-information society by ANP (ANP를 활용한 후기정보사회의 수준진단과 측정에 관한 연구)

  • Song, Young-Jo;Kwak, Jeong-Ho
    • Informatization Policy
    • /
    • v.23 no.2
    • /
    • pp.73-97
    • /
    • 2016
  • Social changes due to ICT like Big Data, IoT, Cloud and Mobile is progressing rapidly. Now, we get out of the old-fashioned frame was measured at the level of the information society through the introduction of PC, Internet speed and Internet subscribers etc and there is a need for a new type of diagnostic information society framework. This study is the study for the framework established to diagnose and measure post-information society. The framework and indicators were chosen in accordance with the technological society coevolution theory and information society-related indicators presented from authoritative international organizations. Empirical results utilizing the indicators and framework developed in this study were as follows: First, the three sectors, six clusters (items), 25 nodes (indicators) that make up the information society showed that all strongly connected. Second, it was diagnosed as information society development (50.34%), technology-based expansion (25.03%) and ICT effect (24.63%) through a network analysis (ANP) for the measurement of importance of the information society. Third, the result of calculating the relative importance of the cluster and nodes showed us (1)social development potential (26.04%), (2)competitiveness (15.9%), (3)ICT literacy (15.5%) (4) (social)capital (24.3 %), (5)ICT acceptance(9.54%), (6)quality of life(8.7%). Consequently, We should take into account the effect of the economy and quality of life beyond ICT infrastructure-centric when we measure the post-information society. By applying the weighting we should performs a comparison between countries and we should diagnose the level of Korea and provide policy implications for the preparation of post-information society.

A Study on the Factors Influencing a Company's Selection of Machine Learning: From the Perspective of Expanded Algorithm Selection Problem (기업의 머신러닝 선정에 영향을 미치는 요인 연구: 확장된 알고리즘 선택 문제의 관점으로)

  • Yi, Youngsoo;Kwon, Min Soo;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.37-64
    • /
    • 2022
  • As the social acceptance of artificial intelligence increases, the number of cases of applying machine learning methods to companies is also increasing. Technical factors such as accuracy and interpretability have been the main criteria for selecting machine learning methods. However, the success of implementing machine learning also affects management factors such as IT departments, operation departments, leadership, and organizational culture. Unfortunately, there are few integrated studies that understand the success factors of machine learning selection in which technical and management factors are considered together. Therefore, the purpose of this paper is to propose and empirically analyze a technology-management integrated model that combines task-tech fit, IS Success Model theory, and John Rice's algorithm selection process model to understand machine learning selection within the company. As a result of a survey of 240 companies that implemented machine learning, it was found that the higher the algorithm quality and data quality, the higher the algorithm-problem fit was perceived. It was also verified that algorithm-problem fit had a significant impact on the organization's innovation and productivity. In addition, it was confirmed that outsourcing and management support had a positive impact on the quality of the machine learning system and organizational cultural factors such as data-driven management and motivation. Data-driven management and motivation were highly perceived in companies' performance.

A Study on the Effect of Network Centralities on Recommendation Performance (네트워크 중심성 척도가 추천 성능에 미치는 영향에 대한 연구)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.23-46
    • /
    • 2021
  • Collaborative filtering, which is often used in personalization recommendations, is recognized as a very useful technique to find similar customers and recommend products to them based on their purchase history. However, the traditional collaborative filtering technique has raised the question of having difficulty calculating the similarity for new customers or products due to the method of calculating similaritiesbased on direct connections and common features among customers. For this reason, a hybrid technique was designed to use content-based filtering techniques together. On the one hand, efforts have been made to solve these problems by applying the structural characteristics of social networks. This applies a method of indirectly calculating similarities through their similar customers placed between them. This means creating a customer's network based on purchasing data and calculating the similarity between the two based on the features of the network that indirectly connects the two customers within this network. Such similarity can be used as a measure to predict whether the target customer accepts recommendations. The centrality metrics of networks can be utilized for the calculation of these similarities. Different centrality metrics have important implications in that they may have different effects on recommended performance. In this study, furthermore, the effect of these centrality metrics on the performance of recommendation may vary depending on recommender algorithms. In addition, recommendation techniques using network analysis can be expected to contribute to increasing recommendation performance even if they apply not only to new customers or products but also to entire customers or products. By considering a customer's purchase of an item as a link generated between the customer and the item on the network, the prediction of user acceptance of recommendation is solved as a prediction of whether a new link will be created between them. As the classification models fit the purpose of solving the binary problem of whether the link is engaged or not, decision tree, k-nearest neighbors (KNN), logistic regression, artificial neural network, and support vector machine (SVM) are selected in the research. The data for performance evaluation used order data collected from an online shopping mall over four years and two months. Among them, the previous three years and eight months constitute social networks composed of and the experiment was conducted by organizing the data collected into the social network. The next four months' records were used to train and evaluate recommender models. Experiments with the centrality metrics applied to each model show that the recommendation acceptance rates of the centrality metrics are different for each algorithm at a meaningful level. In this work, we analyzed only four commonly used centrality metrics: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. Eigenvector centrality records the lowest performance in all models except support vector machines. Closeness centrality and betweenness centrality show similar performance across all models. Degree centrality ranking moderate across overall models while betweenness centrality always ranking higher than degree centrality. Finally, closeness centrality is characterized by distinct differences in performance according to the model. It ranks first in logistic regression, artificial neural network, and decision tree withnumerically high performance. However, it only records very low rankings in support vector machine and K-neighborhood with low-performance levels. As the experiment results reveal, in a classification model, network centrality metrics over a subnetwork that connects the two nodes can effectively predict the connectivity between two nodes in a social network. Furthermore, each metric has a different performance depending on the classification model type. This result implies that choosing appropriate metrics for each algorithm can lead to achieving higher recommendation performance. In general, betweenness centrality can guarantee a high level of performance in any model. It would be possible to consider the introduction of proximity centrality to obtain higher performance for certain models.