• Title/Summary/Keyword: Artificial Intelligence (AI)

Search Result 2,070, Processing Time 0.028 seconds

Enhancing the performance of the facial keypoint detection model by improving the quality of low-resolution facial images (저화질 안면 이미지의 화질 개선를 통한 안면 특징점 검출 모델의 성능 향상)

  • KyoungOok Lee;Yejin Lee;Jonghyuk Park
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.171-187
    • /
    • 2023
  • When a person's face is recognized through a recording device such as a low-pixel surveillance camera, it is difficult to capture the face due to low image quality. In situations where it is difficult to recognize a person's face, problems such as not being able to identify a criminal suspect or a missing person may occur. Existing studies on face recognition used refined datasets, so the performance could not be measured in various environments. Therefore, to solve the problem of poor face recognition performance in low-quality images, this paper proposes a method to generate high-quality images by performing image quality improvement on low-quality facial images considering various environments, and then improve the performance of facial feature point detection. To confirm the practical applicability of the proposed architecture, an experiment was conducted by selecting a data set in which people appear relatively small in the entire image. In addition, by choosing a facial image dataset considering the mask-wearing situation, the possibility of expanding to real problems was explored. As a result of measuring the performance of the feature point detection model by improving the image quality of the face image, it was confirmed that the face detection after improvement was enhanced by an average of 3.47 times in the case of images without a mask and 9.92 times in the case of wearing a mask. It was confirmed that the RMSE for facial feature points decreased by an average of 8.49 times when wearing a mask and by an average of 2.02 times when not wearing a mask. Therefore, it was possible to verify the applicability of the proposed method by increasing the recognition rate for facial images captured in low quality through image quality improvement.

A Study on the Establishment of Artificial Neural Networks for the Use of Similar-Experimental Transition Data of Surface Roughness Prediction Equation in Mold Machining (금형의 절삭가공에서 표면거칠기 예측 수식의 유사-실험 데이터 활용을 위한 인공신경망 구축에 대한 연구)

  • Ji-Woo Kim;Jun-Han Lee;Dong-Won Lee;Jong-Sun Kim;Jong-Su Kim
    • Design & Manufacturing
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Surface roughness is one of the quality factors of molds that significantly influences the quality and performance of the final product, so it should be carefully considered during mold processing. To achieve the targeted surface roughness in mold machining, it typically relies on the utilization of cutting models for predicting cutting forces and experimental studies to optimize machining conditions. Because it is difficult to intuitively deduce the correlation between cutting variables and actual surface roughness, experiments are necessary in various machining conditions to adapt to changing machining environments. Furthermore, in micro-machining environments like in this study, various factors such as the difficulty of detecting micro-cutting signals, the lack of established standard models for predicting micro-cutting forces, and increased machining costs make it challenging to secure surface roughness through interpretation models and experiments. Moreover, although the trend of utilizing artificial intelligence in industries is increasing, there exist limitations in applying the technology due to the extensive time, manpower, and costs involved in collecting high-quality data for constructing artificial neural networks. In this study, to overcome these limitations and supplement experimental data necessary for AI learning, a neural network conversion model was proposed to convert surface roughness prediction equations into experimental data. Then, by using the converted formula data as similar-experimental data along with actual experimental data, an artificial neural network model for predicting surface roughness was constructed. The predicted surface roughness data obtained through the proposed method was compared and analyzed against actual surface roughness data. As a result, the prediction model incorporating similar-experimental data achieved an accuracy improvement of over 36% compared to models using only experimental data. The surface roughness prediction model with similar-experimental data is expected to replace labor-intensive and costly activities of collecting experimental data in various machining environments.

Visual Verb and ActionNet Database for Semantic Visual Understanding (동영상 시맨틱 이해를 위한 시각 동사 도출 및 액션넷 데이터베이스 구축)

  • Bae, Changseok;Kim, Bo Kyeong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.5
    • /
    • pp.19-30
    • /
    • 2018
  • Visual information understanding is known as one of the most difficult and challenging problems in the realization of machine intelligence. This paper proposes deriving visual verb and construction of ActionNet database as a video database for video semantic understanding. Even though development AI (artificial intelligence) algorithms have contributed to the large part of modern advances in AI technologies, huge amount of database for algorithm development and test plays a great role as well. As the performance of object recognition algorithms in still images are surpassing human's ability, research interests shifting to semantic understanding of video contents. This paper proposes candidates of visual verb requiring in the construction of ActionNet as a learning and test database for video understanding. In order to this, we first investigate verb taxonomy in linguistics, and then propose candidates of visual verb from video description database and frequency of verbs. Based on the derived visual verb candidates, we have defined and constructed ActionNet schema and database. According to expanding usability of ActionNet database on open environment, we expect to contribute in the development of video understanding technologies.

Evaluation of Building Detection from Aerial Images Using Region-based Convolutional Neural Network for Deep Learning (딥러닝을 위한 영역기반 합성곱 신경망에 의한 항공영상에서 건물탐지 평가)

  • Lee, Dae Geon;Cho, Eun Ji;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.469-481
    • /
    • 2018
  • DL (Deep Learning) is getting popular in various fields to implement artificial intelligence that resembles human learning and cognition. DL based on complicate structure of the ANN (Artificial Neural Network) requires computing power and computation cost. Variety of DL models with improved performance have been developed with powerful computer specification. The main purpose of this paper is to detect buildings from aerial images and evaluate performance of Mask R-CNN (Region-based Convolutional Neural Network) developed by FAIR (Facebook AI Research) team recently. Mask R-CNN is a R-CNN that is evaluated to be one of the best ANN models in terms of performance for semantic segmentation with pixel-level accuracy. The performance of the DL models is determined by training ability as well as architecture of the ANN. In this paper, we characteristics of the Mask R-CNN with various types of the images and evaluate possibility of the generalization which is the ultimate goal of the DL. As for future study, it is expected that reliability and generalization of DL will be improved by using a variety of spatial information data for training of the DL models.

Assessing the Impact of Climate Change on Water Resources: Waimea Plains, New Zealand Case Example

  • Zemansky, Gil;Hong, Yoon-Seeok Timothy;Rose, Jennifer;Song, Sung-Ho;Thomas, Joseph
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.18-18
    • /
    • 2011
  • Climate change is impacting and will increasingly impact both the quantity and quality of the world's water resources in a variety of ways. In some areas warming climate results in increased rainfall, surface runoff, and groundwater recharge while in others there may be declines in all of these. Water quality is described by a number of variables. Some are directly impacted by climate change. Temperature is an obvious example. Notably, increased atmospheric concentrations of $CO_2$ triggering climate change increase the $CO_2$ dissolving into water. This has manifold consequences including decreased pH and increased alkalinity, with resultant increases in dissolved concentrations of the minerals in geologic materials contacted by such water. Climate change is also expected to increase the number and intensity of extreme climate events, with related hydrologic changes. A simple framework has been developed in New Zealand for assessing and predicting climate change impacts on water resources. Assessment is largely based on trend analysis of historic data using the non-parametric Mann-Kendall method. Trend analysis requires long-term, regular monitoring data for both climate and hydrologic variables. Data quality is of primary importance and data gaps must be avoided. Quantitative prediction of climate change impacts on the quantity of water resources can be accomplished by computer modelling. This requires the serial coupling of various models. For example, regional downscaling of results from a world-wide general circulation model (GCM) can be used to forecast temperatures and precipitation for various emissions scenarios in specific catchments. Mechanistic or artificial intelligence modelling can then be used with these inputs to simulate climate change impacts over time, such as changes in streamflow, groundwater-surface water interactions, and changes in groundwater levels. The Waimea Plains catchment in New Zealand was selected for a test application of these assessment and prediction methods. This catchment is predicted to undergo relatively minor impacts due to climate change. All available climate and hydrologic databases were obtained and analyzed. These included climate (temperature, precipitation, solar radiation and sunshine hours, evapotranspiration, humidity, and cloud cover) and hydrologic (streamflow and quality and groundwater levels and quality) records. Results varied but there were indications of atmospheric temperature increasing, rainfall decreasing, streamflow decreasing, and groundwater level decreasing trends. Artificial intelligence modelling was applied to predict water usage, rainfall recharge of groundwater, and upstream flow for two regionally downscaled climate change scenarios (A1B and A2). The AI methods used were multi-layer perceptron (MLP) with extended Kalman filtering (EKF), genetic programming (GP), and a dynamic neuro-fuzzy local modelling system (DNFLMS), respectively. These were then used as inputs to a mechanistic groundwater flow-surface water interaction model (MODFLOW). A DNFLMS was also used to simulate downstream flow and groundwater levels for comparison with MODFLOW outputs. MODFLOW and DNFLMS outputs were consistent. They indicated declines in streamflow on the order of 21 to 23% for MODFLOW and DNFLMS (A1B scenario), respectively, and 27% in both cases for the A2 scenario under severe drought conditions by 2058-2059, with little if any change in groundwater levels.

  • PDF

Fourth industrial revolution of Women's University Students and change of intelligent information technology

  • Hwang, Eui-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.235-243
    • /
    • 2019
  • Universities are opening related majors and subjects to nurture the problem-solving fusion that businesses want. The time has come when rapid technological. On this thesis, we analyzed three years (2017-2019) of survey result of Women University students in order to figuring out and dealing with the change in 4th industrial revolution and intellectual information technology. It turns out that 1) there was an increase of interest in 4th industrial revolution from 59% in 2017 to 80% in 2019, 2) IoT, ICT, Artificial Intelligence, and Education Research System became top priority in technical strategy, 3)the prime keyword is AI, robot, job, 4)the expectation on increasing of the opportunity and the number of jobs in science technology field was 50%, 5)the importance of universities and companies was 50%, 80% each, 6) the information needed for science technology were educational discipline, change in future science, prospective future information in order, and 7)the most needed education were education on creativity, coding, cross-subject, engineering in order. In the era of the fourth industrial revolution, it is essential to expand the SW manpower base in various fields. University education, which should provide connectivity for super-fusion, should provide curriculum optimized for industrial demands such as, fusion and connected education, creative thinking, self-directed problem solving and etc.

The Improvement Plan for Indicator System of Personal Information Management Level Diagnosis in the Era of the 4th Industrial Revolution: Focusing on Application of Personal Information Protection Standards linked to specific IT technologies (제4차 산업시대의 개인정보 관리수준 진단지표체계 개선방안: 특정 IT기술연계 개인정보보호기준 적용을 중심으로)

  • Shin, Young-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.1-13
    • /
    • 2021
  • This study tried to suggest ways to improve the indicator system to strengthen the personal information protection. For this purpose, the components of indicator system are derived through domestic and foreign literature, and it was selected as main the diagnostic indicators through FGI/Delphi analysis for personal information protection experts and a survey for personal information protection officers of public institutions. As like this, this study was intended to derive an inspection standard that can be reflected as a separate index system for personal information protection, by classifying the specific IT technologies of the 4th industrial revolution, such as big data, cloud, Internet of Things, and artificial intelligence. As a result, from the planning and design stage of specific technologies, the check items for applying the PbD principle, pseudonymous information processing and de-identification measures were selected as 2 common indicators. And the checklists were consisted 2 items related Big data, 5 items related Cloud service, 5 items related IoT, and 4 items related AI. Accordingly, this study expects to be an institutional device to respond to new technological changes for the continuous development of the personal information management level diagnosis system in the future.

A Study on the Win-Loss Prediction Analysis of Korean Professional Baseball by Artificial Intelligence Model (인공지능 모델에 따른 한국 프로야구의 승패 예측 분석에 관한 연구)

  • Kim, Tae-Hun;Lim, Seong-Won;Koh, Jin-Gwang;Lee, Jae-Hak
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.77-84
    • /
    • 2020
  • In this study, we conducted a study on the win-loss predicton analysis of korean professional baseball by artificial intelligence models. Based on the model, we predicted the winner as well as each team's final rank in the league. Additionally, we developed a website for viewers' understanding. In each game's first, third, and fifth inning, we analyze to select the best model that performs the highest accuracy and minimizes errors. Based on the result, we generate the rankings. We used the predicted data started from May 5, the season's opening day, to August 30, 2020 to generate the rankings. In the games which Kia Tigers did not play, however, we used actual games' results in the data. KNN and AdaBoost selected the most optimized machine learning model. As a result, we observe a decreasing trend of the predicted results' ranking error as the season progresses. The deep learning model recorded 89% of the model accuracy. It provides the same result of decreasing ranking error trends of the predicted results that we observe in the machine learning model. We estimate that this study's result applies to future KBO predictions as well as other fields. We expect broadcasting enhancements by posting the predicted winning percentage per inning which is generated by AI algorism. We expect this will bring new interest to the KBO fans. Furthermore, the prediction generated at each inning would provide insights to teams so that they can analyze data and come up with successful strategies.

Evaluation of Artificial Intelligence Accuracy by Increasing the CNN Hidden Layers: Using Cerebral Hemorrhage CT Data (CNN 은닉층 증가에 따른 인공지능 정확도 평가: 뇌출혈 CT 데이터)

  • Kim, Han-Jun;Kang, Min-Ji;Kim, Eun-Ji;Na, Yong-Hyeon;Park, Jae-Hee;Baek, Su-Eun;Sim, Su-Man;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Deep learning is a collection of algorithms that enable learning by summarizing the key contents of large amounts of data; it is being developed to diagnose lesions in the medical imaging field. To evaluate the accuracy of the cerebral hemorrhage diagnosis, we used a convolutional neural network (CNN) to derive the diagnostic accuracy of cerebral parenchyma computed tomography (CT) images and the cerebral parenchyma CT images of areas where cerebral hemorrhages are suspected of having occurred. We compared the accuracy of CNN with different numbers of hidden layers and discovered that CNN with more hidden layers resulted in higher accuracy. The analysis results of the derived CT images used in this study to determine the presence of cerebral hemorrhages are expected to be used as foundation data in studies related to the application of artificial intelligence in the medical imaging industry.

Effects of Implementing Living Lab to Change Users' Perception of Smart Housing Residential Service Technologies (스마트하우징 주거서비스 기술에 대한 이용자 인식 개선을 위한 리빙랩 활용성 분석 연구)

  • Byung-Chang Kwag;Won-Gil Ji;Sung-Ze Yi;Gil-Tae Kim
    • Land and Housing Review
    • /
    • v.14 no.3
    • /
    • pp.125-135
    • /
    • 2023
  • In South Korea, it has been increased the necessity of supplying housing services to meet the needs and desires of various residents by reflecting various demographic and social changes. In particular, various smart device has been widely utilized in South Korea and the smart technologies, such as artificial intelligence and the Internet of Things has been developed rapidly. These smart technologies could support smart housing that allows residents to easily and comfortably employ residential services. However, it is necessary to improve the awareness of users in order to spread the smart housing residential services connected to smart technologies. For this reason, this study observed changes in users' perceptions of smart housing residential service technology using Living Lab. As a result, after experiencing the Living Lab, users' awareness of smart housing housing service increased, and it was observed that the preferred housing service technology was more detailed than before the Living Lab experience. This study shows that it is important to raise users' awareness for the dissemination of smart housing residential service technology, and that Living Lab can be an effective means for this purpose.