• 제목/요약/키워드: Artificial Intelligence

검색결과 5,348건 처리시간 0.032초

디지털 트윈 기반 노지스마트팜 활용방안 (Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin)

  • 김석구
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.7-7
    • /
    • 2023
  • 현재 다양한 4차산업의 주요기술로는 빅데이터, 사물인터넷, 인공지능, 블록체인, 혼합현실(MR), 드론 등이 대표적인 기술들이다. 특히 최근에 세계적인 기술적 트랜드로 자리 잡고 있는 "디지털 트윈(digital twin)은 물리적인 사물과 컴퓨터에 동일하게 표현되는 가상 모델의 개념으로서. 실제 물리적인 자산 대신 소프트웨어로 가상화한 자산의 Digital twin을 만들어 모의실험함으로써 실제 농작업의 특성(현재 상태, 농업생산성, 농작업 시나리오, 등)에 대한 정확한 정보를 얻을 수 있다. 본 연구에서는 노지노업 주산지에 대한 디지털 트윈 데이터를 구축하고 스마트팜 단지를 설계 및 구축하여, 통합관제시스템 운영을 통해 자동 물관리, 원격생육예찰, 드론방제, 병충해 예찰작업 등으로 농작업을 효율화하고자 한다. 또한, 빅데이터 분석을 통한 적정량의 비료·농약사용으로 환경적 부하를 최소화하여, 노동력절감, 농작물 생산성을 향상할 수 있는 디지털 환경제어농업을 국내에 보급하고자 한다. 이러한 노지농업 기술은 디지털 농작업 및 재배관리 등 으로 노동력이 절감되고, 기후변화에 대비한 물이용 최적화와 토양오염예방 효과를 기대할 수 있으며, 전국 재배환경 디지털 데이터 확보를 통한 노지작물의 정량적인 생육관리가 가능하게 된다. 또한 농업생산성 향상을 통한 탄소중립 RED++ 활동을 직접적으로 실천을 할 수 있는 방안이다. 취득된 고정밀·고화질 영상기반 농작물 생육데이터취득을 통한 생육현황 분석과 예측은 디지털 영농작업관리에 매우 효과적이다. 실제 국립식량과학원 남부작물부에서는 지중점적, 땅속배수 등 다양한 종류의 노지스마트팜 연구개발을 진행하였다. 특히, 올해부터는 전국농업기술원 단지를 대상으로 노지스마트팜 시설 구축 및 기술 보급을 통한 사업화를 본격적으로 진행하고 있다. 본 연구에서는 디지털 트윈 기술과 노지스마트팜 기술을 융합한 농업분야 구축사례와 향후 활용방안에 대하여 서술하고자 한다.

  • PDF

침수유발 강우량을 이용한 강원특별자치도 호우특보 기준에 관한 연구 (The study of heavy rain warning in Gangwon State using threshold rainfall)

  • 이현지;강동호;이익상;김병식
    • 한국수자원학회논문집
    • /
    • 제56권11호
    • /
    • pp.751-764
    • /
    • 2023
  • 강원특별자치도는 태백산맥을 중심으로 지방에 따라 기후 특성이 매우 다르며, 국지성 호우가 빈번하게 발생하는 지역이다. 호우재해는 발생 시간이 짧고, 시공간적 변동성이 매우 커 많은 인명 및 재산피해를 유발한다. 최근 10년(2012~2021)간 강원지역 호우피해 발생 횟수는 28건이고, 평균 발생 피해액은 456억 원가량으로 집계되었다. 호우재해를 저감하기 위해선 지역단위의 재난관리 방안을 수립해야 한다. 특히나 현재 운영 중인 호우특보 기준은 획일화되어 지역 특성을 고려하지 못하는 한계가 있다. 이에 본 연구는 강원특별자치도에 위치한 특보구역을 대상으로 침수유발 강우량을 고려한 호우특보 기준을 제안하고자 한다. 특보구역별 침수유발 강우량 대푯값 분석 결과 평균값이 호우특보 발령 기준과 유사했고, 이를 본 연구의 호우특보 기준으로 선정하였다. 호우특보 기준 검토를 위한 강우사상으로 2019년 태풍 미탁, 2020년 태풍 마이삭과 하이선, 2023년 태풍 카눈 강우사상을 적용했고, Hit Rate 정확도 검증 결과 강릉평지 72%, 원주 98%로 본 연구는 실제 특보를 잘 반영함을 확인했다. 본 연구의 호우특보 기준은 위기경보 단계(관심, 주의, 경계, 심각)와 위계가 동일하여 선제적 호우재해 대응이 가능할 것으로 판단된다. 본 연구 결과는 향후 호우재해 대응의 획일적 의사결정 시스템을 보완하고, 이를 토대로 지역별 재해위험성을 고려한 호우특보 기준으로 활용될 수 있을 것으로 사료된다.

네트워크 관점에 기반한 사회적 자본 및 실험실 창업팀 다양성이창업 성과에 미치는 영향: I-Corps program을 중심으로 (The Impact of Social Capital and Laboratory Startup Team Diversity on Startup Performance Based on a Network Perspective: Focusing on the I-Corps Program)

  • 이재호;손영우;한정화;이상명
    • 벤처창업연구
    • /
    • 제18권6호
    • /
    • pp.173-189
    • /
    • 2023
  • 혁신 기술 개발이 거듭되며 인공지능, 생명공학, 로봇, 항공우주, 전기차, 태양광 등의 신산업이 창출되며 거시적 경영환경이 급변하고 있다. 이러한 대규모 변화와 복잡성 증가로 인해 창업 전략 차원에서 기술이나 자산의 소유 그 자체보다는 자본이 관계의 중요성 증대로 활용되면서 새로운 가치 창출이 가능한 사회적 자본(Social Capital)의 효과에 주목할 필요가 있다. 사회적 자본은 1916년 Hanifan이 최초로 제안한 개념으로 개인 또는 사회적 구성원들 간의 상호 지속적이며 유기적 관계 또는 축적된 인간관계 네트워크에 잠재되거나 활용이 가능한 능력이나 자원의 전체적 총합을 일컫는다. 또한, 특출한 창업자 1인 보다는 다양한 배경과 특성 및 역량을 갖춘 창업팀 다양성이 각광을 받고 있다. 창업팀 다양성은 창업팀의 인구통계학적 요인이나 신념, 가치 등의 심층적 요소에 대한 다양성을 뜻한다. 거시적 환경 변화로 산업 혁신을 주도하고 국가의 핵심성장동력 창출 역할을 하는 기술창업 및 실험실창업의 중요성이 강조되고 있는데 본 연구에서는 '아이코어(I-Corps)' 프로그램에 주목하였다. 혁신군단을 의미하는 아이코어는 2011년 미연구재단(NSF)이 기업가 정신 및 연구 결과 사업화 장려를 위해 출범된 실험실 창업프로그램으로 교수와 연구원이 참여하는 창업팀 구성과 시장발견활동에 주안점을 두고 있다. 본 연구에서는 이런 특성을 감안하여 네트워크 관점의 사회적 자본과 창업팀 다양성이 아이코어 창업성과에 끼치는 영향을 실증적으로 검증하였다. 분석 결과 창업팀의 학력 다양성이 창업팀의 재무적 성과에 부(-)의 영향을, 성별 다양성과 사회적 자본의 인지적 차원이 창업팀의 재무적 성과에 정(+)의 영향을 끼쳤다. 본 연구는 아이코어 실험실 창업팀 다양성, 사회적 자본과 그 성과 해석에 대한 이론적, 실무적 시사점을 보다 유용하게 제공할 것으로 기대한다.

  • PDF

인공지능 사고 함양을 위한 인공지능 빅 아이디어 기반 초등학교 수학 융합 수업 사례연구 (A case study of elementary school mathematics-integrated classes based on AI Big Ideas for fostering AI thinking)

  • 김초희;장혜원
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.255-272
    • /
    • 2024
  • 본 연구의 주요 목적은 인공지능 사고를 함양할 수 있는 수학 융합 수업을 설계하고 이를 적용함으로써 나타나는 초등학생들의 인공지능 사고를 분석하는 것이다. 이를 위해 미국의 AI4K12 Initiative가 개발한 인공지능 빅 아이디어의 학습목표(Learning Objective) 및 지속적 이해(Enduring Understanding)와 2015 개정 초등학교 수학과 교육과정 성취기준을 연계하여 인공지능 사고 함양을 위한 수학 융합 수업을 설계 및 실시하였다. 수학적 내용 수업 2개, 수학적 과정 수업 2개로, 수학적 내용 수업은 인공지능 빅 아이디어의 Perception-Processing, Learning-Nature of Learning과 연계하였으며 수학적 과정 수업은 Representation & Reasoning-Search, Representation & Reasoning-Reasoning과 연계하였다. 설계한 수업 중 Learning-Nature of Learning을 제외한 세 개의 수업을 대상 학년에 맞추어 K 초등학교 5학년 두 학급, 6학년 한 학급에 적용하였다. 수업 중 학생 담화 및 활동지, 수업 관찰 자료를 수집하였으며, 이를 컴퓨팅 사고 분류 체계를 기반으로 인공지능 사고 구성 요소를 추가하여 구성한 인공지능 사고 분석틀을 사용하여 분석하였다. 연구 결과, 인공지능 빅 아이디어가 인공지능 사고 함양을 위한 수학 융합 수업 설계 시 준거로서 기능할 수 있고 이를 통해 초등학생들에게도 인공지능 교육이 가능함을 확인할 수 있었다. 수학 융합 수업은 학생들의 다양한 인공지능 사고를 촉진할 수 있었는데, 구체적으로 수업 과정에서 데이터, 모델링과 시뮬레이션, 컴퓨팅 문제해결, 인공지능 사고 요소가 다양하게 나타난 것에 비해 시스템 사고 요소가 나타나는 빈도수는 상대적으로 적었다. 또한 입체도형 및 공간감각 등의 수학적 내용 요소와 수학 교과역량에 해당하는 수학적 과정 요소의 성취를 보여주었다. 요컨대 인공지능 빅 아이디어를 기반으로 한 수학 융합 수업은 초등학생들의 인공지능 개념 및 원리 이해와 수학적 내용 요소의 이해 및 과정 요소의 강화에 도움이 된다고 할 수 있다. 더욱이 학생들은 수업 중 기존 문제해결 방법의 구조적 일관성을 유지한 채 이를 새로운 문제해결로 확장하는 모습을 보여주었는데, 이러한 반응을 통해 인공지능 사고의 전이 가능성을 확인할 수 있었다. 본 연구 결과에 기초하여, 대상 학년과 빅 아이디어의 하위 요소를 확장함으로써 초등학생들의 다양한 인공지능 사고 요소를 함양하려는 수학 수업 설계를 통한 교수학적 노력 및 지속적인 연구가 필요하다.

딥러닝 알고리즘을 이용한 저선량 디지털 유방 촬영 영상의 복원: 예비 연구 (Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study)

  • 하수민;김학희;강은희;서보경;최나미;김태희;구유진;예종철
    • 대한영상의학회지
    • /
    • 제83권2호
    • /
    • pp.344-359
    • /
    • 2022
  • 목적 깊은 컨볼루션 신경망 기법을 결합한 영상 잡음 제거 알고리즘을 개발하고 이를 응용하여 저선량 유방 촬영 영상으로 유방암을 진단하는 데 그 효능을 조사하고자 한다. 대상과 방법 6명의 유방 영상 전문의가 전향적 연구에 참여하였다. 모든 영상 전문의는 병변 감지를 위해 저선량 영상을 독립적으로 평가하고 정성적 척도를 사용하여 진단 품질을 평가하였다. 영상 잡음 제거 알고리즘을 적용한 후, 동일한 영상 전문의가 병변 감지 가능성과 영상 품질에 대한 평가를 하였다. 임상 적용을 위해 동일한 영상 전문의가 병변 유형과 위치에 대한 합의 결정 후, 저선량 영상, 재구성된 영상, 기존 선량 영상을 무작위 순서로 제시하여 평가하였다. 결과 전 절제 표본의 저선량 영상을 참조로 40% 재구성된 영상에서 병변이 더 잘 인식되었다. 임상 적용단계에서 40% 재구성된 영상과 비교하여, 기존 선량 영상이 해상도(p < 0.001), 석회에 대한 진단 품질(p < 0.001), 유방 종괴, 비대칭, 구조왜곡의 진단 품질(p = 0.037)에 대해 더 높은 평균값을 보였다. 40% 재구성된 영상은 100% 영상과 비교 시 전반적 화질(p = 0.547), 병변의 가시성(p = 0.120), 대조도(p = 0.083)에서 비슷한 성적을 보였으며 유의미한 차이도 보이지 않았다. 결론 깊은 컨볼루션 신경망 기법을 결합한 효과적인 잡음 제거 및 영상 재구성 처리 알고리즘은 유방 촬영의 상당한 선량 감소를 위한 길을 열어 유방암 진단을 가능하게 할 것이다.

Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease

  • Hye Jeon Hwang;Hyunjong Kim;Joon Beom Seo;Jong Chul Ye;Gyutaek Oh;Sang Min Lee;Ryoungwoo Jang;Jihye Yun;Namkug Kim;Hee Jun Park;Ho Yun Lee;Soon Ho Yoon;Kyung Eun Shin;Jae Wook Lee;Woocheol Kwon;Joo Sung Sun;Seulgi You;Myung Hee Chung;Bo Mi Gil;Jae-Kwang Lim;Youkyung Lee;Su Jin Hong;Yo Won Choi
    • Korean Journal of Radiology
    • /
    • 제24권8호
    • /
    • pp.807-820
    • /
    • 2023
  • Objective: To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software. Materials and Methods: This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system. Results: Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT. Conclusion: CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD.

멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용 (Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network)

  • 하태준;김희상;강성욱;이두희;김우진;문기원;최현수;김정현;김윤;박소현;박상원
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.187-201
    • /
    • 2024
  • 골다공증은 전 세계적으로 주요한 건강 문제임에도 불구하고, 골절 발생 전까지 쉽게 발견되지 않는 단점을 가지고 있습니다. 본 연구에서는 골다공증 조기 발견 능력 향상을 위해, 복부 컴퓨터 단층 촬영(Computed Tomography, CT) 영상을 활용하여 정상-골감소증-골다공증으로 구분되는 골다공증 단계를 체계적으로 분류할 수 있는 딥러닝(Deep learning, DL) 시스템을 개발하였습니다. 총 3,012개의 조영제 향상 복부 CT 영상과 개별 환자의 이중 에너지 X선 흡수 계측법(Dual-Energy X-ray Absorptiometry, DXA)으로 얻은 T-점수를 활용하여 딥러닝 모델 개발을 수행하였습니다. 모든 딥러닝 모델은 비정형 이미지 데이터, 정형 인구 통계 정보 및 비정형 영상 데이터와 정형 데이터를 동시에 활용하는 다중 모달 방법에 각각 모델 구현을 실현하였으며, 모든 환자들은 T-점수를 통해 정상, 골감소증 및 골다공증 그룹으로 분류되었습니다. 가장 높은 정확도를 갖는 모델 우수성은 비정형-정형 결합 데이터 모델이 가장 우수하였으며, 수신자 조작 특성 곡선 아래 면적이 0.94와 정확도가 0.80를 제시하였습니다. 구현된 딥러닝 모델은 그라디언트 가중치 클래스 활성화 매핑(Gradient-weighted Class Activation Mapping, Grad-CAM)을 통해 해석되어 이미지 내에서 임상적으로 관련된 특징을 강조했고, 대퇴 경부가 골다공증을 통해 골절 발생이 높은 위험 부위임을 밝혔습니다. 이 연구는 DL이 임상 데이터에서 골다공증 단계를 정확하게 식별할 수 있음을 보여주며, 조기에 골다공증을 탐지하고 적절한 치료로 골절 위험을 줄일 수 있는 복부 컴퓨터 단층 촬영 영상의 잠재력을 제시할 수 있습니다.

중등 과학교사들이 생각하는 과학기술 관련 위험교육 실태와 교육 요구 (Risk Education and Educational Needs Related to Science and Technology: A Study on Science Teachers' Perceptions)

  • 김진희;나지연;정용욱
    • 한국과학교육학회지
    • /
    • 제44권1호
    • /
    • pp.57-75
    • /
    • 2024
  • 본 연구는 중등 과학교사들이 생각하는 과학기술 관련 위험교육 실태와 교육 요구를 조사하고자 총 366명의 중등 과학교사를 대상으로 설문조사를 실시하였다. 그 결과는 다음과 같다. 첫째, 과학기술로 인해 발생할 수 있는 위험을 위험지각, 위험평가, 위험관리 측면에서 교육해 본 적이 있는 교사보다 그렇지 않은 교사들이 더 많았다. 교사들이 지도해 본 위험으로는 지구온난화가 가장 많았으며, 지진, 인공지능, 교통사고가 그다음으로 많이 다루어졌다. 둘째, 교사들은 자신이 2022 개정 과학과 교육과정의 성취기준에 과학기술로 인해 발생할 수 있는 위험이 포함되어 있다는 것에 대한 이해가 부족하다고 인식하였으나 가르칠 준비는 되어 있다고 생각하였다. 셋째, 교사들은 위험관리, 위험평가보다 위험지각에 대한 자신들의 이해도가 높다고 인식하였다. 넷째, 교사들이 받은 위험에 대한 연수 경험은 매우 적었으며 위험지각에 비해 위험평가와 위험관리에 대한 연수 경험이 있는 교사의 수가 더 적었다. 교사들이 경험한 연수로는 실험실 안전교육이 가장 많았다. 다섯째, 교사들은 위험교육의 10가지 목표에 대한 자신들의 역량이 높지 않다고 인식하고 있었다. 중학교 교사, 통합과학교육 전공 교사의 경우 상대적으로 자신들의 역량을 높이 평가하였다. 여섯째, 다수의 교사들이 학교 과학교육에서 위험을 다루는 것에 대해 중요하게 생각하고 있었다. 또한 정보 활용, 의사 결정 역량, 대중매체의 영향평가 순으로 중요하다고 생각하였으며, 실천역량, 정보활용, 위험특성영향평가 순으로 교육이 시급하다고 응답하였다. 일곱째, 위험교육의 10가지 목표별 교육요구도 우선순위를 도출한 결과, 실천역량, 위험특성의 영향평가, 위험평가방법에 대한 평가가 각각 1, 2, 3위로 나타났다.

딥러닝을 활용한 고대 수막새 이미지 분류 검토 (Application of Deep Learning for Classification of Ancient Korean Roof-end Tile Images)

  • 김영현
    • 헤리티지:역사와 과학
    • /
    • 제57권3호
    • /
    • pp.24-35
    • /
    • 2024
  • 최근 의료, 제조, 자율주행, 보안 등 다양한 분야에서 인공지능과 컨볼루션 신경망 등 딥러닝 기술을 활용한 연구들이 활발하게 진행되고 있으며, 사회 전반에 적지 않은 영향을 미치고 있다. 본 연구 또한 이러한 흐름에 맞춰서 고고학 유물 분류에 딥러닝을 활용해 보았다. 즉, 연구는 고고학 조사를 통해 출토된 고대 수막새의 이미지 분류에 딥러닝 기술을 적용하는 초보적 시도로서, 고구려, 백제, 신라 시대의 수막새 이미지를 CNN 모델로 학습시켜 분류를 진행하였다. 고구려, 백제, 신라 수막새 이미지 각각 100장씩 총 300장을 기반으로 기본 데이터셋을 형성하였고, 데이터 증강 기법을 활용하여 4배를 증가시킴으로써 총 1,200장을 데이터셋으로 구축하였다. 사전 훈련된 EfficientNetB0 모델의 전이학습을 통하여 모델을 구축한 후, 5겹 교차검증을 실시한 결과 평균 학습 정확도 98.06%, 검증 정확도 97.08%를 기록하였다. 또한 학습된 모델을 240장의 테스트 데이터셋으로 성능을 평가한 결과, 최소 91% 이상의 높은 정확도로 삼국의 수막새 이미지를 시대별로 구분할 수 있음을 확인하였다. 특히 학습률 0.0001에서 정확도 92.92%, 정밀도 92.96%, 재현율 92.92%, F1 점수 92.93%로 가장 우수한 성능을 보였는데, 이는 다양한 학습률 설정을 통하여 과적합과 과소적합 문제를 방지함과 동시에 최적의 매개변수를 찾는 과정에서 이루어졌다. 본 연구의 결과는 한국 고고학 자료의 분류에 딥러닝 기술 활용 가능성을 확인했다는 점에서 의의가 있다고 생각된다. 또한 기존에 축적·제작된 ImageNet 데이터셋 및 파라미터가 고고 자료 분석에도 긍정적으로 적용할 수 있음을 확인하였다. 이러한 접근은 향후 고고학 데이터베이스 축적이나 활용, 박물관의 유물 분류 및 정리 등 다양한 방식의 모델을 창출할 수 있을 것이다.

딥러닝 기반 구름 및 구름 그림자 탐지를 통한 고해상도 위성영상 UDM 구축 가능성 분석 (Applicability Analysis of Constructing UDM of Cloud and Cloud Shadow in High-Resolution Imagery Using Deep Learning)

  • 김나영;윤예린;최재완;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.351-361
    • /
    • 2024
  • 위성영상은 구름, 구름 그림자, 지형 그림자 등을 포함한 다양한 요소를 포함하고 있으며, 이러한 요소들을 정확히 식별하고 제거하는 것은 원격 탐사 분야에서 위성영상의 신뢰성을 유지하기 위해 필수적이다. 이를 위해 Landsat-8, Sentinel-2, Compact Advanced Satellite 500-1 (CAS500-1)과 같은 위성들은 분석준비자료(Analysis Ready Data)의 일환으로 영상과 함께 사용가능한 데이터 마스크(Usable Data Mask, UDM)를 제공하고 있으며, UDM 데이터의 정확한 구축을 위해 구름 및 구름 그림자 탐지가 필수적이다. 기존의 구름 및 구름 그림자 탐지 기법은 임계값 기반 기법과 인공지능 기반 기법으로 나뉘며, 최근에는 많은 양의 데이터를 처리하는 데 유리한 딥러닝 네트워크를 활용한 인공지능 기법이 많이 사용되고 있다. 본 연구에서는 오픈소스 데이터 셋을 통해 훈련된 딥러닝 네트워크 기반 구름 및 구름 그림자 탐지를 통해 고해상도 위성영상의 UDM 구축 가능성을 분석하고자 하였다. 딥러닝 네트워크의 성능을 검증하기 위해 Landsat-8, Sentinel-2, CAS500-1 위성영상과 함께 제공된 기구축된 UDM 데이터와 딥러닝 네트워크가 생성한 탐지 결과 간의 유사성을 분석하였다. 그 결과, 딥러닝 네트워크가 생성한 탐지 결과는 높은 정확도를 나타냈다. 또한 UDM을 제공하지 않는 고해상도 위성영상인 KOMPSAT-3/3A 영상에 적용하였다. 실험 결과, 딥러닝 네트워크를 통하여 고해상도 위성영상 내에 존재하는 구름 및 구름 그림자를 효과적으로 탐지한 것을 확인하였다. 이를 통해 고해상도 위성영상에서도 딥러닝 네트워크를 사용하여 UDM 데이터를 구축할 수 있는 가능성을 확인하였다.