• 제목/요약/키워드: Artificial Intelligence

검색결과 5,348건 처리시간 0.035초

이미지 조작 탐지를 위한 포렌식 방법론 (A Forensic Methodology for Detecting Image Manipulations)

  • 이지원;전승제;박윤지;정재현;정두원
    • 정보보호학회논문지
    • /
    • 제33권4호
    • /
    • pp.671-685
    • /
    • 2023
  • 인공지능이 이미지 편집 기술에 적용되어 조작 흔적이 거의 없는 고품질 이미지를 생성할 수 있게 되었다. 그러나 이러한 기술들은 거짓 정보 유포, 증거 인멸, 사실 부인 등의 범죄 행위에 악용될 수 있기 때문에 이에 대응하기 위한 방안이 필요하다. 본 연구에서는 이미지 조작을 탐지하기 위해 이미지 파일 분석과 모바일 포렌식 아티팩트 분석을 수행한다. 이미지 파일 분석은 조작된 이미지의 메타데이터를 파싱하여 Reference DB와 비교분석을 통해 조작여부를 탐지하는 방법이다. Reference DB는 이미지의 메타데이터에 남는 조작 관련 아티팩트를 수집하는 데이터베이스로서, 이미지 조작을 탐지하는 기준이 된다. 모바일 포렌식 아티팩트 분석은 이미지 편집 도구와관련된 패키지를 추출하고 분석하여 이미지 조작을 탐지하도록 한다. 본 연구에서 제안하는 방법론은 기존의 그래픽적 특징기반 분석의 한계를 보완하고, 이미지 처리 기법과 조합하여 오탐을 줄일 수 있도록 한다. 연구 결과는 이러한 방법론이 디지털 포렌식 조사 및 분석에 유의미하게 활용될 수 있음을 보여준다. 또한, 조작된 이미지 데이터셋과 함께 이미지 메타데이터 파싱 코드와 Reference DB를 제공하여 관련 연구에 기여하고자 한다.

Plasma Sheath Monitoring Sensor 데이터를 활용한 질소이온 상태예측 모형의 기계학습 (Efficient Multicasting Mechanism for Mobile Computing Environment Machine learning Model to estimate Nitrogen Ion State using Traingng Data from Plasma Sheath Monitoring Sensor)

  • 정희진;유진승;정민중
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.27-30
    • /
    • 2022
  • 기존의 공정방식에 비해 효율성이나 환경적 면에서 많은 장점을 가진 플라즈마 공정은 반도체 제작에서 널리 사용되고 있다. Plasma Sheath란 플라즈마 bulk와 그 것을 둘러싸고 있는 챔버 벽면과 전극 사이에서 관찰되는 어두운 영역으로 양이온과 전자의 이동속도 차이로 인해 발생한다. Plasma Sheath Monitoring Sensor (PSMS)는 플라즈마와 전극 사이의 전압(Voltage) 차이와 전극에 걸리는 RF power 등을 실시간으로 측정하는 센서로서 플라즈마 챔버 내에서 플라즈마의 상태와 매우 상관도가 높을 것으로 기대된다. 본 연구에서는 PSMS 데이터를 활용하여 플라즈마 챔버 내의 질소이온의 상태를 예측하는 모형을 딥러닝 기계학습 기법을 이용하여 구축하였다. 연구에 사용된 데이터는 파워와 압력을 달리 셋팅한 실험에서 측정된 PSMS 데이터를 학습데이터로 활용하고 플라즈마 bulk와 Si substrate에서 측정된 질소 이온의 비율, 플럭스, 밀도를 레이블로 활용하였다. 본 연구의 결과는 향후 플라즈마 공정의 최적화 및 실시간 정밀제어를 위한 인공지능 기술의 기초가 될 것으로 기대된다.

  • PDF

딥러닝 기반 CT 스캔 재구성을 통한 조영제 사용 및 신체 부위 분류 성능 향상 연구 (A Study on the Use of Contrast Agent and the Improvement of Body Part Classification Performance through Deep Learning-Based CT Scan Reconstruction)

  • 나성원;고유선;김경원
    • 방송공학회논문지
    • /
    • 제28권3호
    • /
    • pp.293-301
    • /
    • 2023
  • 표준화되지 않은 의료 데이터 수집 및 관리는 여전히 수동으로 진행되고 있어, 이 문제를 해결하기 위해 딥 러닝을 사용해 CT 데이터를 분류하는 연구들이 진행되고 있다. 하지만 대부분 연구에서는 기본적인 CT slice인 axial 평면만을 기반으로 모델을 개발하고 있다. CT 영상은 일반 이미지와 다르게 인체 구조만 묘사하기 때문에 CT scan을 재구성하는 것만으로도 더 풍부한 신체적 특징을 나타낼 수 있다. 이 연구는 axial 평면뿐만 아니라 CT 데이터를 2D로 변환하는 여러가지 방법들을 통해 보다 높은 성능을 달성할 수 있는 방법을 찾고자 한다. 훈련은 5가지 부위의 CT 스캔 1042개를 사용했고, 모델 평가를 위해 테스트셋 179개, 외부 데이터셋으로 448개를 수집했다. 딥러닝 모델 개발을 위해 ImageNet으로 사전 학습된 InceptionResNetV2를 백본으로 사용하였으며, 모델의 전체 레이어를 재 학습했다. 실험결과 신체 부위 분류에서는 재구성 데이터 모델이 99.33%를 달성하며 axial 모델보다 1.12% 더 높았고, 조영제 분류에서는 brain과 neck에서만 axial모델이 높았다. 결론적으로 axial slice로만 훈련했을 때 보다 해부학적 특징이 잘 나타나는 데이터로 학습했을 때 더 정확한 성능 달성이 가능했다.

79종의 임플란트 식별을 위한 딥러닝 알고리즘 (Deep learning algorithms for identifying 79 dental implant types)

  • 공현준;유진용;엄상호;이준혁
    • 구강회복응용과학지
    • /
    • 제38권4호
    • /
    • pp.196-203
    • /
    • 2022
  • 목적: 본 연구는 79종의 치과 임플란트에 대해 딥러닝을 이용한 식별 모델의 정확도와 임상적 유용성을 평가하는 것을 목적으로 하였다. 연구 재료 및 방법: 2001년부터 2020년까지 30개 치과에서 임플란트 치료를 받은 환자들의 파노라마 방사선 사진에서 총 45396개의 임플란트 고정체 이미지를 수집했다. 수집된 임플란트 이미지는 18개 제조사의 79개 유형이었다. 모델 학습을 위해 EfficientNet 및 Meta Pseudo Labels 알고리즘이 사용되었다. EfficientNet은 EfficientNet-B0 및 EfficientNet-B4가 하위 모델로 사용되었으며, Meta Pseudo Labels는 확장 계수에 따라 두 가지 모델을 적용했다. EfficientNet에 대해 Top 1 정확도를 측정하고 Meta Pseudo Labels에 대해 Top 1 및 Top 5 정확도를 측정하였다. 결과: EfficientNet-B0 및 EfficientNet-B4는 89.4의 Top 1 정확도를 보였다. Meta Pseudo Labels 1은 87.96의 Top 1 정확도를 보였고, 확장 계수가 증가한 Meta Pseudo Labels 2는 88.35를 나타냈다. Top 5 정확도에서 Meta Pseudo Labels 1의 점수는 97.90으로 Meta Pseudo Labels 2의 97.79보다 0.11% 높았다. 결론: 본 연구에서 임플란트 식별에 사용된 4가지 딥러닝 알고리즘은 모두 90%에 가까운 정확도를 보였다. 임플란트 식별을 위한 딥러닝의 임상적 적용 가능성을 높이려면 더 많은 데이터를 수집하고 임플란트에 적합한 미세 조정 알고리즘의 개발이 필요하다.

소셜미디어 사진 게시물의 딥러닝을 활용한 도시공원 이용자 활동 이미지 분류모델 개발 (Development of Image Classification Model for Urban Park User Activity Using Deep Learning of Social Media Photo Posts)

  • 이주경;손용훈
    • 한국조경학회지
    • /
    • 제50권6호
    • /
    • pp.42-57
    • /
    • 2022
  • 본 연구의 목적은 인공지능의 딥러닝을 활용하여 소셜미디어에서 공유되는 도시공원 이용자 활동사진을 분류하는 기초 모델을 만드는 것이다. 소셜미디어 데이터는 네이버 검색을 통해 수집된 도시공원 관련 사진들을 수집하여 분류모델에 활용하였다. 도시공원 특성 평가에 활용할 수 있는 지표인 자연성(naturalness), 잠재적 매력성(potential attraction), 활동(activity)을 기반으로 최종 21개의 분류 항목체계를 만들고, 항목별로 네이버에서 공유되는 실제 도시공원 사진을 수집하여 주석이 달린 데이터 세트를 구축했다. 수집한 사진 데이터 세트에 대해 커스텀(cuntom) CNN 모델과 사전 훈련된 CNN의 전이학습 모델을 설계하고 분석하였다. 연구결과, 가장 우수한 성능을 보였던 Xception 전이학습 모델이 최종적으로 도시공원 이용자 활동 이미지 분류모델로 선정되었으며, 그 외 다양한 평가 지표를 통해 모델을 평가했다. 본 연구는 소셜미디어에 공유되는 이용자 사진을 활용하여 도시공원 특성을 평가할 수 있는 지표로서 AI를 구축한 것에 의의가 있다. 딥러닝을 활용한 분류모델은 수동분류에 대한 한계를 보완하고, 대량의 도시공원 사진을 효율적으로 분류할 수 있어서 향후 도시공원의 모니터링 및 관리에 활용할 수 있는 유용한 방법이라고 할 수 있다.

CNN 기반 감성 변화 패턴을 이용한 가짜뉴스 탐지 (Fake News Detection Using CNN-based Sentiment Change Patterns)

  • 이태원;박지수;손진곤
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권4호
    • /
    • pp.179-188
    • /
    • 2023
  • 최근 가짜뉴스는 뉴스 콘텐츠 형식을 가장하고 중요한 사건이 발생할 때마다 등장하여 사회적 혼란을 초래한다. 이에 가짜뉴스를 탐지하기 위한 연구로 인공지능 기술이 사용된다. 자연어 처리를 통해 가짜뉴스를 자동으로 인지 및 차단하거나, 네트워크 인과 추론과 결합함으로써 허위 정보를 확산시키는 소셜미디어 인플루언스 계정을 감지하는 등의 가짜뉴스 탐지 접근법이 딥러닝을 통해 구현될 수 있었다. 그러나 가짜뉴스 탐지는 여러 자연어 처리 분야 중에서도 해결이 어려운 문제로 분류된다. 가짜뉴스가 가지는 형식 및 표현의 다양성으로 특성 추출의 난도가 높고, 뉴스가 속한 범주에 따라 하나의 특성이 서로 다른 의미를 가질 수도 있는 등 다양한 한계점이 존재한다. 본 논문에서는 가짜뉴스를 탐지하기 위한 추가적인 식별 기준으로 감성 변화 패턴을 제시한다. 합성곱 신경망을 가짜뉴스 데이터 세트에 적용하여 콘텐츠 특성에 기반한 분석을 수행하고, 감성 변화 패턴을 추가로 분석함으로써 성능이 개선된 모델을 제안한다. 뉴스를 구성하는 문장에 대하여 감성 극성을 산출하고 장단기 메모리를 적용함으로써 문장 순서에 의존적인 결괏값을 얻을 수 있다. 이를 감성 변화의 패턴으로 정의하고 뉴스의 콘텐츠 특성과 결합하여 가짜뉴스 탐지를 위한 제안 모델의 독립변수로 활용한다. 제안 모델과 비교 모델을 딥러닝으로 학습시키고 가짜뉴스 데이터 세트를 이용한 실험을 진행하여 감성 변화 패턴이 가짜뉴스 탐지 성능을 개선할 수 있음을 확인한다.

현장 재하시험을 통한 파형 마이크로파일의 기초보강 효과 분석 (Evaluation of the Effect of Waveform Micropiles on Reinforcement of Foundation Structures Through Field Load Tests)

  • 백성하;한진태;김석중;김준영
    • 한국지반공학회논문집
    • /
    • 제39권3호
    • /
    • pp.29-40
    • /
    • 2023
  • 본 연구에서는 파형 마이크로파일의 기초보강 효과를 분석하기 위해서, 매립토-풍화토-풍화암의 지층구조를 보이는 지반에 마이크로파일을 설치한 뒤 현장 재하시험을 수행했다. 단일 마이크로파일 재하시험 결과, 파형 마이크로파일은 토사층에서 발현되는 주면마찰력만으로도 충분한 지지력을 가져 암반층의 심도가 깊은 지반 조건에서 유리한 시공성을 가질 수 있음을 확인하였다. 또한 동일한 설계하중이 적용되었음에도, 단일 마이크로파일 재하시험 시 설계 하중 범위 내에서 평가된 파형 마이크로파일의 연직강성이 일반 마이크로파일의 연직강성에 비해 약 2.2배 큰 것으로 나타났다. 일반 및 파형 마이크로파일로 구성된 무리말뚝 재하시험 결과, 강성이 큰 마이크로파일이 높은 하중을 분담하는 것으로 나타났다. 일반 및 파형 마이크로파일 모두 동일한 설계하중이 적용되어 지지력에는 큰 차이를 보이지 않았음에도, 강성이 큰 파형 마이크로파일이 작게는 1.7배에서 크게는 3.2배 큰 하중 분담율을 보였다. 파형 마이크로파일은 대부분 보강기초로 활용될 것으로 예상되는데, 증축 리모델링 등을 통해 추가적인 하중 작용 시 많은 하중을 분담함으로써 기존 기초의 지지력 파괴 가능성을 낮출 수 있을 것으로 기대된다.

온라인 커뮤니티에서 사용되는 댓글의 형태를 고려한 악플 탐지를 위한 전처리 기법 (Preprocessing Technique for Malicious Comments Detection Considering the Form of Comments Used in the Online Community)

  • 김해수;김미희
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.103-110
    • /
    • 2023
  • 인터넷이 보급되면서 사람들 간의 소통을 위한 커뮤니티가 활성화됨과 함께 익명 커뮤니티가 나타났고 익명성을 이용한 공격적인 게시글, 댓글을 남기는 등 타인에게 피해를 주는 행위를 하는 이용자가 많아지고 있다. 과거에는 관리자가 직접 글과 댓글을 확인하며 삭제 및 차단했지만, 커뮤니티 이용자가 늘어나면서 관리자가 계속 감시할 수 없는 수준에 이르렀다. 초기에는 특정 단어가 포함되면 해당 글을 게시하거나 댓글을 달 수 없는 형태로 악의적인 글이 게시되는 것을 막는 단어 필터링 기법을 사용하였으나 유사한 단어를 사용하는 등 우회하는 형식으로 필터링을 피해 갔다. 이를 해결하는 방법으로 딥러닝을 이용하여 실시간으로 이용자들이 게시하는 글들을 감시하였으나 최근 커뮤니티에서는 해당 커뮤니티에서만 이해할 수 있는 단어를 사용하거나 일반적인 한글이 아닌 인간의 시야에서만 이해할 수 있는 문자를 사용하고 있다. 이들이 사용하는 문자의 종류나 형태가 다양하여 인공지능 모델에 모든 것을 학습시키기에 어려움이 있다. 이에 본 논문에서는 한글의 자음과 모음 띄어쓰기 이미지를 학습시킨 CNN 모델을 이용해서 문장의 각 문자를 이미지화해 인간의 시야에서만 이해할 수 있는 문자를 모델이 예측한 문자로 변환하는 전처리 기법을 제안한다. 실험 결과, 제안한 전처리 기법을 통해 LSTM, BiLSTM, CNN-BiLSTM 모델에서의 성능이 각각 3.2%, 3.3%, 4.88% 증가함을 확인했다.

CT 영상 기반 근감소증 진단을 위한 AI 영상분할 모델 개발 및 검증 (Development and Validation of AI Image Segmentation Model for CT Image-Based Sarcopenia Diagnosis)

  • 이충섭;임동욱;노시형;김태훈;고유선;김경원;정창원
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권3호
    • /
    • pp.119-126
    • /
    • 2023
  • 근감소증은 국내는 2021년 질병으로 분류되었을 만큼 잘 알려져 있지 않지만 고령화사회에 진입한 선진국에서는 사회적 문제로 인식하고 있다. 근감소증 진단은 유럽노인근감소증 진단그룹(EWGSOP)과 아시아근감소증진단그룹(AWGS)에서 제시하는 국제표준지침을 따른다. 최근 진단방법으로 절대적 근육량 이외에 신체수행평가로 보행속도 측정과 일어서기 검사 등을 통하여 근육 기능을 함께 측정할 것을 권고하고 있다. 근육량을 측정하기 위한 대표적인 방법으로 DEXA를 이용한 체성분 분석 방법이 임상에서 정식으로 실시하고 있다. 또한 MRI 또는 CT의 복부 영상을 이용하여 근육량을 측정하는 다양한 연구가 활발하게 진행되고 있다. 따라서 본 논문에서는 근감소증 진단을 위해서 비교적 짧은 촬영시간을 갖는 CT의 복부영상기반으로 AI 영상 분할 모델을 개발하고 다기관 검증한 내용을 기술한다. 우리는 CT 영상 중에 요추의 L3 영역을 분류하여 피하지방, 내장지방, 근육을 자동으로 분할할 수 있는 인공지능 모델을 U-Net 모델을 사용하여 개발하였다. 또한 모델의 성능평가를 위해서 분할영역의 IOU(Intersection over Union)를 계산하여 내부검증을 진행했으며, 타 병원의 데이터를 활용하여 동일한 IOU 방법으로 외부검증을 진행한 결과를 보인다. 검증 결과를 토대로 문제점과 해결방안에 대해서 검증하고 보완하고자 했다.

스마트 플랫폼을 이용한 전통시장 활성화 방안 연구 (A study on the Revitalization of Traditional Market with Smart Platform)

  • 박정호;최은영
    • 서비스연구
    • /
    • 제13권1호
    • /
    • pp.127-143
    • /
    • 2023
  • 현재 국내 전통시장은 중앙정부와 지방자치단체 등 많은 관련 주체들의 다양한 사업 추진에도 불구하고 2000년대 초반부터 시작된 침체의 늪을 벗어나지 못하고 있다. 이러한 전통시장의 봉착된 위기를 극복하기 위하여 최근에는 빅데이터 분석, 인공지능, 사물인터넷 등과 같은 정보통신기술이 융합된 스마트 전통시장 구축 방안에 대한 R&D가 다양하게 진행되고 있다. 본 연구에서는 전통시장 활성화 관련하여 2012년 이후부터 최근까지 진행되었던 여러 선행연구 및 전통시장 이용자, 해외 전통시장의 ICT 기술 적용사례 등을 분석하고, 분석된 내용을 토대로 ICT 기술을 활용하여 스마트 전통시장을 구축하기 위한 모델을 제안한다. 본 연구에서 제안하는 모델에는 방문객과 상호작용할 수 있는 전통시장 메타버스의 구축, NFC 기술을 접목시킨 디지털 사이니지를 통한 전통시장 방문 인증, IoT와 AI 기술을 적용한 화재감지 기능의 정확성 고도화, 시장 상품 출시 정보 및 이벤트 알림을 위한 스마트폰 앱 개발, 그리고 이상 네 가지 방안과 연동하는 전자상거래 시스템을 포함하는 방안이 포함된다. 제안 모델은 온라인 쇼핑 및 모바일 기기 사용에 익숙한 MZ 세대를 전통시장의 주요 고객으로 확대시키기 위한 방안이라 말할 수 있다. 따라서 제시된 모델을 기반으로 스마트 전통시장 플랫폼이 구현되어 운영된다면, MZ 세대 및 외국인 관광객들에게 전통시장에 대한 흥미와 관심을 이끌어 낼 수 있어 스마트 전통시장을 하나의 문화 콘텐츠로 자리매김하게 만들 것이며, 보다 안전한 시장 환경 조성과 함께 적시에 효과적인 마케팅을 전개할 수 있어 향후 전통시장 활성화에 기여할 수 있을 것이다.