• 제목/요약/키워드: Artificial Intelligence

검색결과 5,348건 처리시간 0.028초

인공지능 서비스 거버넌스 연구 (Governance research for Artificial intelligence service)

  • 유순덕
    • 한국인터넷방송통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.15-21
    • /
    • 2024
  • 본 연구의 목적은 일반적인 서비스 뿐만 아니라 공공정책 등에 인공지능 서비스를 도입할 때, 어떤 단계를 통해 진행하고 점검할 수 있는지 방안에 대해 제안을 하고 있다. 이를 위해 인공지능 서비스 관리와 거버넌스 툴킷에 대해 제시하고 공공정책에 인공지능 서비스를 제공할 때, 어떻게 해야 하는지에 대한 내용을 연구하였다. 첫째, 인공지능 서비스의 개발 방향과 개발하지 말아야 할 내용에 대한 지침을 제공하고 있다. 둘째, 개발을 하는 경우 인공지능 거버넌스툴킷에서 제공하고 있는 설계, 개발, 배포단계별로 검토해야 하는 체크 리스트를 통해 내용을 점검 후 진행하는 것을 권장하고 있다. 셋쨰, 인공지능 서비스를 운영할 시 1) 기획설계, 수명주기, 3) 모델 구축 및 검증, 4) 배포 및 모니터링, 5) 책임에 대한 각각 원칙과 관련 내용을 명확히 제시하고 이에 충족하고 있는지에 대해 점검을 해야 한다. 인공지능서비스의 거버넌스 측면은 궁극적으로 제공되는 서비스에 대한 위험 측면을 완화하려는 노력으의 일환이므로 등장할 수 있는 위험관리 측면에서도 연구가 이루어져야 한다. 우리는 인공지능에 제공하는 장점을 수용하면서 한계 및 위험요소에 대한 적극적인 대응 방안으로 마련해야 한다. 인공지능 기술을 적극적 활용하여 효율적으로 정책 수립하여 고부가가치를 생성하고 사회에 의미 있는 영향을 제공할 수 있도록 노력해야 한다.

과학중점학교 학생의 블록코딩 플랫폼 KNIME을 활용한 과학-AI 융합 수업 경험 분석 (An Analysis of Students' Experiences Using the Block Coding Platform KNIME in a Science-AI Convergence Class at a Science Core High School)

  • 홍의정;신은혜;장진섭;채승철
    • 한국과학교육학회지
    • /
    • 제44권2호
    • /
    • pp.141-153
    • /
    • 2024
  • 2022 개정 과학과 교육과정은 AI를 활용한 탐구 활동을 경험함으로써 융합적 사고를 바탕으로 일상생활과 사회 속 과학 문제를 해결할 수 있는 능력을 기르는 것을 목표로 한다. 이에 과학 교과와 AI를 융합한 과학-AI 융합교육 프로그램을 개발하고 이를 활용하여 고등학생을 대상으로 융합 수업을 진행하였다. 과학-AI 융합 수업은 감쇠진자의 운동을 정성적으로 이해하고 블록코딩 플랫폼 KNIME을 사용하여 진자의 위치를 예측할 수 있는 AI 모델을 구축하는 것을 목표로 한다. 개별 심층 면담을 통해 학습자의 경험을 이해하고 해석하고자 하였다. Giorgi의 현상학적 연구 방법론을 바탕으로 학습자의 참여 동기, 배움과 변화, 어려움과 수업의 한계를 기술하였다. 학생들은 AI에 대한 관심과 사회적 트렌드에 대한 인식을 바탕으로 수업에 참여하고자 하는 동기를 가지고 있었다. 학생들은 직접 데이터를 수집하고 AI 모델을 구축하는 것을 배웠다. 실험 결과를 바탕으로 주변 현상을 예측할 수 있을 것으로 기대하였으며 융합 수업을 긍정적으로 인식하였다. 한편, 여전히 익숙하지 않은 플랫폼, AI 원리 이해를 어려움으로 인식하였고 따라해야만 하는 수업 방식의 한계와 수업 내용상의 한계를 인식하였다. 융합 수업의 경험은 실생활의 문제를 AI를 통해 해결하고자 하는 학습 동기로 나타났으며, 학생들이 느낀 어려움과 한계는 더 심화되고 확장된 주제를 학습하고 싶은 동기로 이어졌다. 이를 바탕으로 과학-AI 융합 수업을 위한 논의 및 제언을 도출하였다. 본 연구는 과학-AI 융합 수업을 개발하고 이를 현장에 적용할 때 시사점을 제공할 것으로 기대된다.

인공지능(AI) 기반 통합 공정안전관리 시스템 개발에 관한 연구 (A Study on the Development of integrated Process Safety Management System based on Artificial Intelligence (AI))

  • 이경현;백락준;김우수;최희정
    • 문화기술의 융합
    • /
    • 제10권1호
    • /
    • pp.403-409
    • /
    • 2024
  • 본 논문에서는 산업안전보건법에 따라 유해·위험 설비 사업자가 제출하여 공정안전관리 전담기관으로부터 승인받은 공정안전보고서의 데이터를 기반으로 사업장 안전성 향상을 위한 인공지능 통합 공정안전관리(PSM) 시스템 설계를 위한 가이드라인을 제안하였다. 제안된 가이드라인으로 구성되는 시스템은 단일사업장 또는 다수의 사업장을 운영하는 사업자와 공정안전관리 전담기관에 각각 구축하며, 데이터 수집·전처리, 확장 및 분할, 레이블링, 학습 데이터 셋구축 등의 주요 구성 요소와 단계로 구성하였다. 각 공정에서 발생하는 공정 운영 데이터 및 변경 허가 승인 데이터의 수집이 가능하며, 사업장 운영에서 발생하는 모든 데이터의 분석을 통해 잠재적인 고장 예측 및 유지보수 계획을 수립하여, 공정 운전 상황에서의 의사 결정 지원이 가능하다. 또한, 정확하고 신뢰할 수 있는 학습 데이터, 특화된 데이터 셋을 이용하여 시간 및 비용 절감, 인적 오류를 포함한 다양한 위험 요소 감지와 예측, 지속적인 모델 개선 등에 유용성과 효과를 갖으며, 이를 통해 작업장 안전성 향상 및 사고 예방이 가능하다.

Real-World Application of Artificial Intelligence for Detecting Pathologic Gastric Atypia and Neoplastic Lesions

  • Young Hoon Chang;Cheol Min Shin;Hae Dong Lee;Jinbae Park;Jiwoon Jeon;Soo-Jeong Cho;Seung Joo Kang;Jae-Yong Chung;Yu Kyung Jun;Yonghoon Choi;Hyuk Yoon;Young Soo Park;Nayoung Kim;Dong Ho Lee
    • Journal of Gastric Cancer
    • /
    • 제24권3호
    • /
    • pp.327-340
    • /
    • 2024
  • Purpose: Results of initial endoscopic biopsy of gastric lesions often differ from those of the final pathological diagnosis. We evaluated whether an artificial intelligence-based gastric lesion detection and diagnostic system, ENdoscopy as AI-powered Device Computer Aided Diagnosis for Gastroscopy (ENAD CAD-G), could reduce this discrepancy. Materials and Methods: We retrospectively collected 24,948 endoscopic images of early gastric cancers (EGCs), dysplasia, and benign lesions from 9,892 patients who underwent esophagogastroduodenoscopy between 2011 and 2021. The diagnostic performance of ENAD CAD-G was evaluated using the following real-world datasets: patients referred from community clinics with initial biopsy results of atypia (n=154), participants who underwent endoscopic resection for neoplasms (Internal video set, n=140), and participants who underwent endoscopy for screening or suspicion of gastric neoplasm referred from community clinics (External video set, n=296). Results: ENAD CAD-G classified the referred gastric lesions of atypia into EGC (accuracy, 82.47%; 95% confidence interval [CI], 76.46%-88.47%), dysplasia (88.31%; 83.24%-93.39%), and benign lesions (83.12%; 77.20%-89.03%). In the Internal video set, ENAD CAD-G identified dysplasia and EGC with diagnostic accuracies of 88.57% (95% CI, 83.30%-93.84%) and 91.43% (86.79%-96.07%), respectively, compared with an accuracy of 60.71% (52.62%-68.80%) for the initial biopsy results (P<0.001). In the External video set, ENAD CAD-G classified EGC, dysplasia, and benign lesions with diagnostic accuracies of 87.50% (83.73%-91.27%), 90.54% (87.21%-93.87%), and 88.85% (85.27%-92.44%), respectively. Conclusions: ENAD CAD-G is superior to initial biopsy for the detection and diagnosis of gastric lesions that require endoscopic resection. ENAD CAD-G can assist community endoscopists in identifying gastric lesions that require endoscopic resection.

소프트웨어 품질 진단을 위한 고장예측모델 (Failure Prediction Model for Software Quality Diagnosis)

  • 정혜정
    • 벤처혁신연구
    • /
    • 제7권2호
    • /
    • pp.143-152
    • /
    • 2024
  • 최근 AI 기능을 가진 소프트웨어가 많이 개발되어지면서 다양한 예측 기능을 가진 소프트웨어 제품이 늘어나고 있으며, 그런 영향으로 소프트웨어 품질의 중요성이 높아지게 되었다. 특히 AI 기능을 가진 제품의 기능 안전에 대한 고려가 높아지면서 국가적 차원에서 소프트웨어 품질에 대한 관리를 진행하고 있다. 특히 국가적 차원에서 진행하고 있는 소프트웨어 제품의 품질 인증제도로 GS 품질인증제도를 들 수 있는데, GS 인증제도에서도 AI 제품에 대한 품질 평가방안을 연구하고 있다. 본 연구에서는 소프트웨어 신뢰성 검증을 위해서 제시된 다양한 품질 평가 모델에서 국제표준에 근거해서 소프트웨어 품질의 기본 조건이 충족되는 평가모델을 제시하려 한다. 인공지능 부분의 소프트웨어 품질 특성을 고려하여 품질 평가 모델에 대한 연구를 하고, 품질을 진단하고 고장을 예측하려 한다. .본 연구에서는 소프트웨어 신뢰성 성장모델을 기반으로 하여 인공지능 국제 표준 모델을 제시하여 평가 모델을 제시하고 모델을 통해 품질 진단을 할 수 있는 방안을 제시하려 한다. 이러한 측면에서 본 연구는 앞으로 소프트웨어에서 발생하게 되어지는 고장시간에 대한 예측을 통해서 고장을 미리 예측하고 사전에 고장을 찾아서 위험을 예방할 수 있는 차원에서 중요한 의미가 있다고 판단된다. 특히 안전과 관련된 다양한 소프트웨어에서는 고장을 예측한다는 것은 중요한 의미가 있을 것으로 판단된다.

외상 환자의 흉부 CT에서 인공지능을 이용한 갈비뼈 골절 진단 (Diagnosis of Rib Fracture Using Artificial Intelligence on Chest CT Images of Patients with Chest Trauma)

  • ;;고석범;진공용
    • 대한영상의학회지
    • /
    • 제85권4호
    • /
    • pp.769-779
    • /
    • 2024
  • 목적 외상 환자 흉부 CT에서 급성 갈비뼈 골절을 진단하기 위해 개발된 인공지능의 장단점에 대해서 알아보고자 하였다. 대상과 방법 외상으로 응급실에 내원했던 환자들 중 급성 갈비뼈 골절(n = 1159) 또는 정상(n = 50)으로 진단된 1209명의 흉부 CT를 무작위로 선택하였다. 이 중 9명의 급성 갈비뼈 골절 흉부 CT로 인공지능 모델 개발과 훈련을 했으며, 150명의 갈비뼈 골절 흉부 CT와 50명의 정상 흉부 CT로 테스트를 하였고, 나머지 1000명의 급성 갈비뼈 골절 흉부 CT로 내부 검증을 하였다. 급성 갈비뼈 골절에 대한 인공지능 모델의 골절의 유무와 위치에 대한 진단적 정확성과 오류에 대해서 알아보았다. 결과 개발된 인공지능 모델을 테스트 결과 급성 갈비뼈 골절 유무에 대한 민감도, 특이도, 양성예측도, 음성예측도, 정확도는 각각 93.3%, 94%, 97.9%, 82.5%, 95.6%였다. 내부 검증을 했을 때 급성 갈비뼈 골절 유무에 대한 정확도는 96%로 상승되었다. 그러나 급성 갈비뼈 골절 위치의 정확도는 76% (760/1000)로 낮았으며, 그 원인으로는 같은 위치에 있는 견갑골이나 쇄골을 갈비뼈로 잘못 인식(66%) 하거나 일부 갈비뼈를 인식하지 못하는 경우(34%)가 많았다. 결론 급성 갈비뼈 골절 진단을 위한 인공지능 모델이 급성 갈비뼈 골절의 유무 진단에는 높은 정확도를 보였지만 갈비뼈 골절의 정확한 위치를 진단하는 데는 제한점이 있었다.

폐기종 및 간질성 폐질환: 인공지능 소프트웨어 사용 경험 (Using Artificial Intelligence Software for Diagnosing Emphysema and Interstitial Lung Disease)

  • 백상현;진공용
    • 대한영상의학회지
    • /
    • 제85권4호
    • /
    • pp.714-726
    • /
    • 2024
  • 흉부 CT상 폐기종이나 간질성 폐질환의 형태나 범위를 인공지능을 이용하여 자동적으로 객관적으로 진단하는 다양한 알고리즘을 개발되고, 이를 증명하는 연구들이 진행되어 왔다. 흉부 CT상 인공지능을 이용한 폐기종 정량화 연구들을 보면 CT상 폐기종의 상대적인 양이 증가와 폐 기능의 악화와 연관이 있으며, 특히 중심성 폐기종을 중심으로 정량화를 하는 것이 임상 증상이나 만성폐쇄성 폐질환의 사망률을 예측하는 데 도움이 된다고 보고하고 있다. 또한, 간질성 폐질환에서는 인공지능이 CT상 통상성 간질성 폐렴의 형태를 정상, 간유리 음영, 망상형 음영, 벌집 모양, 폐기종, 경화로 분류를 할 수 있고, 인공지능이 흉부영상의학과 전문의와 비슷한 정도로 통상성 간질성 폐렴을 진단(70%-80%) 할 수 있다고 보고했다. 그러나 인공지능의 결과들이 흉부 CT의 스캔 변수들, 재구성 알고리즘, 방사선 선량, 개발된 인공지능 훈련 데이터에 의해 영향을 받으며, 이러한 이유로 아직까지 흉부 CT상 폐기종과 간질성 폐질환의 진단과 정량화는 실제로 일상 업무에서 제한적으로 사용되고 있다. 이 논문에서는 폐기종과 간질성 폐질환의 진단과 정량화를 위해서 인공지능을 사용하고 있는 저자들의 경험을 증례로 소개를 하고, 이 두 질환의 인공지능의 효용성과 제한점에 대해서 언급하고자 한다.

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • 제25권7호
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

로봇의 활용증가에 따른 로봇 및 인공지능 기반 데이터 신호처리 전문가 양성 방안에 관한 연구 (A Study on Methods to Train Experts in Robot and Artificial Intelligence-Based Data Signal Processing in Response to the Increased Use of Robots)

  • 주충호;김대연;김경호;권태웅;손동섭
    • 융합신호처리학회논문지
    • /
    • 제25권2호
    • /
    • pp.58-66
    • /
    • 2024
  • 로봇은 제조와 서비스 분야 등 다양한 산업과 융합하고 전후방 산업에 미치는 파급효과가 큰 융합기술로 최근에는 인공지능(AI) 기술 발달과 함께 중요성이 더욱 강조되고 있다. 특히, 생산인구 감소와 고령화 해결, 제조경쟁력 강화를 위한 핵심 산업으로써 로봇 전문인력양성은 매우 중요한 상황에 직면했다. 본 논문은 구미에 위치한 로봇직업혁신센터의 사례를 분석하여 로봇 전문인력과 로봇·AI 기반 신호처리 전문가 양성 방안을 제시하였고, 핵심 커리큘럼 선정을 통해 실제 교육에 적용하고 교육 프레임워크 개발에 필요한 핵심 사항을 구체적으로 제시하였다. AI 기반 데이터 신호 처리와 로봇의 융합은 다양한 산업에 영향을 미치는 중요한 기술 발전으로 볼 수 있으며 본 논문에서 제안된 것과 같은 포괄적인 교육 프레임워크를 제안함으로써 관련 기관은 전문가를 효과적으로 양성하는데 기초 활용에 도움이 될 것으로 기대된다.

인공지능(AI) 모델을 사용한 차나무 잎의 병해 분류 (Tea Leaf Disease Classification Using Artificial Intelligence (AI) Models)

  • 피우미 사우미야 쿠마라테나;조영열
    • 생물환경조절학회지
    • /
    • 제33권1호
    • /
    • pp.1-11
    • /
    • 2024
  • 이 연구에서는 Inception V3, SqueezeNet(local), VGG-16, Painters 및 DeepLoc의 다섯 가지 인공지능(AI) 모델을 사용하여 차나무 잎의 병해를 분류하였다. 여덟 가지 이미지 카테고리를 사용하였는데, healthy, algal leaf spot, anthracnose, bird's eye spot, brown blight, gray blight, red leaf spot, and white spot였다. 이 연구에서 사용한 소프트웨어는 데이터 시각적 프로그래밍을 위한 파이썬 라이브러리로 작동하는 Orange3였다. 이는 데이터를 시각적으로 조작하여 분석하기 위한 워크플로를 생성하는 인터페이스를 통해 작동되었다. 각 AI 모델의 정확도로 최적의 AI 모델을 선택하였다. 모든 모델은 Adam 최적화, ReLU 활성화 함수, 은닉 레이어에 100개의 뉴런, 신경망의 최대 반복 횟수가 200회, 그리고 0.0001 정규화를 사용하여 훈련되었다. Orange3 기능을 확장하기 위해 새로운 이미지 분석 Add-on을 설치하였다. 훈련 모델에서는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 신경망(neural network), 테스트 및 점수(test and score), 혼동 행렬(confusion matrix) 위젯이 사용되었으며, 예측에는 이미지 가져오기(import image), 이미지 임베딩(image embedding), 예측(prediction) 및 이미지 뷰어(image viewer) 위젯이 사용되었다. 다섯 AI 모델[Inception V3, SqueezeNet(로컬), VGG-16, Painters 및 DeepLoc]의 신경망 정밀도는 각각 0.807, 0.901, 0.780, 0.800 및 0.771이었다. 결론적으로 SqueezeNet(local) 모델이 차나무 잎 이미지를 사용하여 차병해 탐색을 위한 최적 AI 모델로 선택되었으며, 정확도와 혼동 행렬을 통해 뛰어난 성능을 보였다.