본 연구에서는 엔트리 텍스트 모델 학습을 활용해서 초등학교 인공지능 교육 내용을 개발하고 이를 실제 수업에 적용한다. 초·중등 인공지능 내용 체계표를 바탕으로 실과 소프트웨어 교육과 인공지능 교육의 성취 기준을 재구성한다. 기계학습이 가능한 텍스트, 이미지, 소리 중에서 다양한 플랫폼에서 지원하고 초등학생의 데이터 준비 시간을 줄일 수 있으면서 손쉽게 이해가 가능한 '텍스트 모델 학습을 활용한 감정 인식 프로그램 제작'을 교육 내용으로 선정한다. 엔트리 인공지능을 교육 플랫폼으로 선정해서 텍스트 모델 학습을 활용한 감정인식 프로그램을 만드는 인공지능 교육 내용을 개발하고 실제 초등학교 수업에 적용한다. 수업 적용 결과 엔트리 인공지능 수업에 긍정적인 반응과 흥미를 보였다. 본 연구 내용을 기반으로 초등학생을 대상으로 한 수업의 효과성에 대한 양적 연구가 후속 연구로 필요함을 제언한다.
본 연구에서는 딥러닝 기법과 정서적 AI를 적용하여 사용자의 감정 상태를 추정하고 이를 추천 과정에 반영할 수 있는 추천 시스템에 대한 새로운 연구 프레임워크를 제안한다. 이를 위해 분노, 혐오, 공포, 행복, 슬픔, 놀람, 중립의 7가지 감정을 각각 분류하는 감정분류모델을 구축하고, 이 결과를 추천 과정에 반영할 수 있는 모형을 제안한다. 그러나 일반적인 감정 분류 데이터에서는 각 레이블 간 분포 비율의 차이가 크기 때문에 일반화된 분류 결과를 기대하기 어려울 수 있다. 본 연구에서는 감정 이미지 데이터에서 혐오감 등의 감정 개수가 부족한 경우가 많으므로 데이터 증강을 이용한다. 마지막으로, 이미지 증강을 통해 데이터 기반의 감정 예측 모델을 추천시스템에 반영하는 방법을 제안한다.
최근 온라인 게임을 비롯하여 영화, 애니메이션 등 가상현실에서 캐릭터가 중심적인 역할을 하게 되었고 좀 더 능동적이고 사람에 가까운 캐릭터 개발이 필요하게 되었다. 이러한 요구 중에서 본 논문에서는 감성기반 캐릭터에 초점을 맞추었고 Emotion Al사의 Artificial Emotion Engine Model과 OCC Model를 바탕으로 각 캐릭터의 특성을 반영하고 캐릭터간의 상호 작용을 바탕으로 감성을 도출해 낼 수 있는 Emotion Engine의 Architecture를 제시한다.
International Journal of Internet, Broadcasting and Communication
/
제14권1호
/
pp.142-151
/
2022
In this paper, a model combined with explanatory artificial intelligence (xAI) models was presented to secure the reliability of machine learning-based sentiment analysis and prediction. The applicability of the proposed model was tested and described using the IMDB dataset. This approach has an advantage in that it can explain how the data affects the prediction results of the model from various perspectives. In various applications of sentiment analysis such as recommendation system, emotion analysis through facial expression recognition, and opinion analysis, it is possible to gain trust from users of the system by presenting more specific and evidence-based analysis results to users.
지금까지 로봇 및 소프트웨어 에이전트들을 살펴보면, 감정 모델이 내부에 종속적으로 존재하기 때문에 감정모델만을 별도로 분리해 새로운 시스템에 재활용하기란 쉽지 않다. 따라서 어떤 로봇 및 에이전트와 연동될 수 있는 Engine of computational Emotion model (이하 EE로 표시한다)을 소개한다. 이 EE는 어떤 입력 정보에도 치중되지 않고, 어떤 로봇 및 에이전트의 내부와도 연동되도록 독립적으로 감정을 담당하기 위해, 입력 단계인 인식과 출력 단계인 표현을 배제하고, 순수하게 감정의 생성 및 처리를 담당하는 중간 단계인 감정 발생만을 분리하여, '입력단 및 출력단과 독립적인 소프트웨어 형태, 즉 엔진(Engine)'으로 존재한다. 이 EE는 어떤 입력단 및 출력단과 상호작용이 가능하며, 자체 감정뿐 아니라 상대방의 감정을 사용하며, 성격을 활용하여 종합적인 감정을 산출해낸다. 또한 이 EE는 로봇 및 에이전트의 내부에 라이브러리 형태로 존재하거나, 별도의 시스템으로 존재하여 통신할 수 있는 구조로 활용될 수 있다. 감정은 Joy(기쁨), Surprise(놀람), Disgust(혐오), Fear(공포), Sadness(슬픔), Anger(분노)의 기본 감정을 사용하며, 문자열과 계수를 쌍으로 갖는 정보를 EE는 입력 인터페이스를 통해 입력 신호로 받고, 출력 인터페이스를 통해 출력 신호로 내보낸다. EE는 내부에 감정마다 감정경험의 연결 목록을 가지고 있으며, 이의 계수의 쌍으로 구성된 정보를 감정의 생성 및 처리하기 위한 감정상태 목록으로 사용한다. 이 감정경험 목록은 '인간이 실생활에서 경험하는 다양한 감정에 대한 이해를 도모'하는 감정표현어휘로 구성되어 있다. EE는 인간의 감정을 탐색하여 적절한 반응을 나타내주는 상호작용 제품에 이용 가능할 것이다. 본 연구는 제품이 '인간을 공감하고 있음'을 인간이 느낄 수 있도록 유도하는 시스템을 만들고자 함이므로, HRI(인간-로봇 상호작용)나 HCI(인간-컴퓨터 상호작용)와 관련 제품이 효율적인 감정적 공감 서비스를 제공하는데 도움이 될 수 있을 것으로 기대한다.
In order to enhance a model's capability for detecting facial expressions, this research suggests a pipeline that makes use of the GradCAM component. The patching module and the pseudo-labeling module make up the pipeline. The patching component takes the original face image and divides it into four equal parts. These parts are then each input into a 2Dconvolutional layer to produce a feature vector. Each picture segment is assigned a weight token using GradCAM in the pseudo-labeling module, and this token is then merged with the feature vector using principal component analysis. A convolutional neural network based on transfer learning technique is then utilized to extract the deep features. This technique applied on a public dataset MMI and achieved a validation accuracy of 96.06% which is showing the effectiveness of our method.
본 논문에서는 wav2vec 2.0과 KcELECTRA 모델을 활용하여 멀티모달 학습을 통한 감정 분류 방법을 탐색한다. 음성 데이터와 텍스트 데이터를 함께 활용하는 멀티모달 학습이 음성만을 활용하는 방법에 비해 감정 분류 성능을 유의미하게 향상시킬 수 있음이 알려져 있다. 본 연구는 자연어 처리 분야에서 우수한 성능을 보인 BERT 및 BERT 파생 모델들을 비교 분석하여 텍스트 데이터의 효과적인 특징 추출을 위한 최적의 모델을 선정하여 텍스트 처리 모델로 활용한다. 그 결과 KcELECTRA 모델이 감정 분류 작업에서 뛰어난 성능이 보임을 확인하였다. 또한, AI-Hub에 공개되어 있는 데이터 세트를 활용한 실험을 통해 텍스트 데이터를 함께 활용하면 음성 데이터만 사용할 때보다 더 적은 양의 데이터로도 더 우수한 성능을 달성할 수 있음을 발견하였다. 실험을 통해 KcELECTRA 모델을 활용한 경우가 정확도 96.57%로 가장 우수한 성능을 보였다. 이는 멀티모달 학습이 감정 분류와 같은 복잡한 자연어 처리 작업에서 의미 있는 성능 개선을 제공할 수 있음을 보여준다.
Human-robot cooperative tasks are increasingly required in our daily life with the development of robotics and artificial intelligence technology. Interactive reinforcement learning strategies suggest that robots learn task by receiving feedback from an experienced human trainer during a training process. However, most of the previous studies on Interactive reinforcement learning have required an extra feedback input device such as a mouse or keyboard in addition to robot itself, and the scenario where a robot can interactively learn a task with human have been also limited to virtual environment. To solve these limitations, this paper studies training strategies of robot that learn table balancing tasks interactively using deep reinforcement learning with human's facial expression feedback. In the proposed system, the robot learns a cooperative table balancing task using Deep Q-Network (DQN), which is a deep reinforcement learning technique, with human facial emotion expression feedback. As a result of the experiment, the proposed system achieved a high optimal policy convergence rate of up to 83.3% in training and successful assumption rate of up to 91.6% in testing, showing improved performance compared to the model without human facial expression feedback.
게임의 발달은 시각적으로 현실에 가까운 게임캐릭터의 탄생을 가져왔고 현재는 아바타나 이모티 콘 등으로 게임 캐릭터에 감정을 불어넣는 움직임이 활발히 진행되고는 있으나 이는 유동적으로 변화하는 게임 속 환경에 능동적으로 대처하는 감정표현이 아닌 1차적인 입력에 의해 결과 값만을 표현하는 것으로서, 아직 깊이 있는 게임캐릭터의 감정표현은 이루어지고 있지 않다. 이에 본 논문은 유동적으로 변화하는 게임 속 환경에 능동적으로 행동과 감정을 표현하는 게임캐릭터를 제작하기 위해 게임 캐릭터에게 적용할 수 있는 감정 요소를 대표적인 인지심리모델인 OCC모델을 바탕으로 분류하고 이를 상용화 된 RPG게임의 게임 상황 분석을 온톨로지를 통하여 체계화시켜 게임캐릭터를 위한 인공감정모델 'CROSS(Character Reaction on Specific Situation) Model AE Engine'을 제안하고자 한다.
운전 중 감정 인식은 사고를 예방하기 위해 꼭 필요한 과제이다. 더 나아가 자율 주행 시대에서 자동차는 모빌리티의 주체로 운전자와의 감정적인 소통이 더욱 요구되고 있으며 감정 인식 시장은 점점 확산되고 있다. 이에 따라 본 연구 방안에서는 수집하기 비교적 용이한 데이터인 심리데이터와 행동 데이터를 이용해 운전자의 감정을 분류하는 인공지능 모델을 개발하고자 한다. 오토인코더 모델을 통해 잠재 변수를 추출하고, 이를 본 분류 모델의 변수로 사용하였으며, 이는 성능 향상에 영향을 미침을 확인하였다. 또한 기존 뇌파 데이터를 포함했을 때 보다 본 논문이 제시하는 프레임워크를 사용하였을 때 성능이 향상됨도 확인하였다. 최종적으로 심리 및 개인정보데이터, 행동 데이터만을 통해 운전자의 감정 분류 정확도 81%와 F1-Score 80%를 달성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.