• Title/Summary/Keyword: Arterial Spin Labeling

Search Result 24, Processing Time 0.028 seconds

Understanding of Perfusion MR Imaging (관류자기공명영상의 이해)

  • Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.1
    • /
    • pp.27-31
    • /
    • 2013
  • Perfusion MR imaging is how to use exogenous and endogenous contrast agent. Exogenous perfusion MRI methods which are dynamic susceptibility contrast using $T2^*$ effect and dynamic contrast-enhanced using T1 weighted image after injection contrast media. An endogenous perfusion MRI method which is arterial spin labeling using arterial blood flow in body. In order to exam perfusion MRI in human, technical access are very important according to disease conditions. For instance, dynamic susceptibility contrast is used in patients with acute stroke because of short exam time, while dynamic susceptibility contrast or dynamic contrast enhancement provides the various perfusion information for patients with tumor, vascular stenosis. Arterial spin labeling is useful for children, women who are expected to be pregnant. In this regard, perfusion MR imaging is required to understanding, and the author would like to share information with clinical users

  • PDF

Arterial Spin Labeling Magnetic Resonance Imaging in Healthy Adults: Mathematical Model Fitting to Assess Age-Related Perfusion Pattern

  • Ying Hu;Rongbo Liu;Fabao Gao
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1194-1202
    • /
    • 2021
  • Objective: To investigate the age-dependent changes in regional cerebral blood flow (CBF) in healthy adults by fitting mathematical models to imaging data. Materials and Methods: In this prospective study, 90 healthy adults underwent pseudo-continuous arterial spin labeling imaging of the brain. Regional CBF values were extracted from the arterial spin labeling images of each subject. Multivariable regression with the Akaike information criterion, link test, and F test (Ramsey's regression equation specification error test) was performed for 7 models in every brain region to determine the best mathematical model for fitting the relationship between CBF and age. Results: Of all 87 brain regions, 68 brain regions were best fitted by cubic models, 9 brain regions were best fitted by quadratic models, and 10 brain regions were best fitted by linear models. In most brain regions (global gray matter and the other 65 brain regions), CBF decreased nonlinearly with aging, and the rate of CBF reduction decreased with aging, gradually approaching 0 after approximately 60. CBF in some regions of the frontal, parietal, and occipital lobes increased nonlinearly with aging before age 30, approximately, and decreased nonlinearly with aging for the rest of life. Conclusion: In adults, the age-related perfusion patterns in most brain regions were best fitted by the cubic models, and age-dependent CBF changes were nonlinear.

Pseudo Continuous Arterial Spin Labeling MR Imaging of Status Epilepticus (간질중첩증의 동맥 스핀 라벨링 자기공명영상)

  • Yi, Min-Kyung;Choi, Seung-Hong;Jung, Keun-Hwa;Yoon, Tae-Jin;Kim, Ji-Hoon;Sohn, Chul-Ho;Chang, Kee-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.2
    • /
    • pp.142-151
    • /
    • 2012
  • Purpose : The purpose of this study was to describe arterial spin labeling MR image findings of status epilepticus. Materials and Methods: A retrospective chart review within our institute revealed six patients who had been clinically diagnosed as status epilepticus and had also undergone MR imaging that included ASL in addition to routine sequences. Results: Six patients with status epilepticus were studied by conventional MR and arterial spin labeling imaging. All patients showed increased regional CBF correlating with EEG pathology. Notably, in two patients, conventional MRI and DWI showed no abnormal findings whereas pCASL demonstrated regional increased CBF in both patients. Conclusion: Arterial spin labeling might offer additional diagnostic capabilities in the evaluation of patients with status epilepticus.

Functional Magnetic Resonance Imaging with Arterial Spin Labeling: Techniques and Potential Clinical and Research Applications

  • Kim, Ju Ho;Choi, Dae Seob;Park, Sung Eun;Choi, Ho Cheol;Kim, Seong Hu
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.2
    • /
    • pp.91-96
    • /
    • 2017
  • Purpose: To describe technical methods for functional magnetic resonance imaging (fMRI) study with arterial spin labeling (ASL) compared to blood oxygenation level-dependent (BOLD) technique and discuss the potential of ASL for research and clinical practice. Materials and Methods: Task-based (n = 1) and resting-state fMRI (rs-fMRI) (n = 20) were performed using ASL and BOLD techniques. Results of both techniques were compared. Results: For task-based fMRI with finger-tapping, the primary motor cortex of the contralateral frontal lobe and the ipsilateral cerebellum were activated by both BOLD and ASL fMRI. For rs-fMRI of sensorimotor network, functional connectivity showed similar results between BOLD and ASL. Conclusion: ASL technique has potential application in clinical and research fields because all brain perfusion imaging, CBF measurement, and rs-fMRI study can be performed in a single acquisition.

Overview of Arterial Spin Labeling Perfusion MRI (동맥스핀표지 관류 자기공명영상의 개요)

  • Kang, Sung-Jin;Han, Man-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.4
    • /
    • pp.145-152
    • /
    • 2017
  • The arterial spin labeling (ASL) is a magnetic resonance imaging (MRI) method that can evaluate tissue perfusion using blood in the body. The characteristic of non-invasive examinations without contrast agents and the quantitative measurement of perfusion volume is possible, which are increasingly being used for clinical and research purposes. Up to the present, The ASL method has lower SNR than the perfusion imaging method using contrast agent and because optimization of various parameter in the imaging process is difficult, Which may result in measurement errors. To improve this, ASL methods using various technologies are introduced. This paper briefly introduces the outline of ASL, its features in imaging process, various techniques, and clinical application.

Investigation of Perfusion-weighted Signal Changes on a Pulsed Arterial Spin Labeling Magnetic Resonance Imaging Technique: Dependence on the Labeling Gap, Delay Time, Labeling Thickness, and Slice Scan Order (동맥스핀표지 뇌 관류 자기공명영상에서 라벨링 간격 및 지연시간, 표지 두께, 절편 획득 순서의 변화에 따른 관류 신호변화 연구)

  • Byun, Jae-Hoo;Park, Myung-Hwan;Kang, Ji-Yeon;Lee, Jin-Wan;Lee, Kang-Won;Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.108-118
    • /
    • 2013
  • Currently, an arterial spin labeling (ASL) magnetic resonance imaging (MRI) technique does not routinely used in clinical studies to measure perfusion in brain because optimization of imaging protocol is required to obtain optimal perfusion signals. Therefore, the objective of this study was to investigate changes of perfusion-weighed signal intensities with varying several parameters on a pulsed arterial spin labeling MRI technique obtained from a 3T MRI system. We especially evaluated alternations of ASL-MRI signal intensities on special brain areas, including in brain tissues and lobes. The signal targeting with alternating radiofrequency (STAR) pulsed ASL method was scanned on five normal subjects (mean age: 36 years, range: 29~41 years) on a 3T MRI system. Four parameters were evaluated with varying: 1) the labeling gap, 2) the labeling delay time, 3) the labeling thickness, and 4) the slice scan order. Signal intensities were obtained from the perfusion-weighted imaging on the gray and white matters and brain lobes of the frontal, parietal, temporal, and occipital areas. The results of this study were summarized: 1) Perfusion-weighted signal intensities were decreased with increasing the labeling gap in the bilateral gray matter areas and were least affected on the parietal lobe, but most affected on the occipital lobe. 2) Perfusion-weighted signal intensities were decreased with increasing the labeling delay time until 400 ms, but increased up to 1,000 ms in the bilateral gray matter areas. 3) Perfusion-weighted signal intensities were increased with increasing the labeling thickness until 120 mm in both the gray and white matter. 4) Perfusion-weighted signal intensities were higher descending scans than asending scans in both the gray and white matter. We investigated changes of perfusion-weighted signal intensities with varying several parameters in the STAR ASL method. It should require having protocol optimization processing before applying in patients. It has limitations to apply the ASL method in the white matter on a 3T MRI system.

Practical Considerations of Arterial Spin Labeling MRI for Measuring the Multi-slice Perfusion in the Human Brain (스핀 라벨링 자기공명영상을 이용한 사람 뇌에서의 뇌 관류영상의 현실적 문제점을 향상 시키는 방법 연구)

  • Jahng, Geon-Ho
    • Progress in Medical Physics
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this work practical considerations of a pulsed arterial spin labeling MRI are presented to reliable multi-slice perfusion measurements In the human brain. Three parameters were considered in this study. First, In order to improve slice profile and Inversion efficiency of a labeling pulse a high power Inversion pulse of adiabatic hyperbolic secant was designed. A $900^{\circ}$ rotation of the flip angle was provided to make a good slice profile and excellent Inversion efficiency. Second, to minimize contributions of a residual magnetization be4ween Interleaved scans of control and labeling we tested three different conditions which were applied 1) only saturation pulses, 2) only spotter gradients, and 3) combinations of saturation pulses and spotter gradients Applications of bo4h saturation pulses and spoiler gradients minimized the residual magnetization. Finally, to find a minimum gap between a tagged plane and an imaging plane we tested signal changes of the subtracted image between control and labeled Images with varying the gap. The optimum gap was about 20mm. In conclusion, In order to obtain high quality of perfusion Images In human brain It Is Important to use optimum parameters. Before routinely using In clinical studios, we recommend to make optimizations of sequence parameters.

  • PDF

The effects of labeling gap and susceptibility artifacts in pCASL perfusion MRI (pCASL 관류 영상에서 표지 간격과 자화감수성 인공물이 영상에 미치는 영향)

  • Kim, Seong-Hu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.213-217
    • /
    • 2015
  • To report problems found in a patient who has implemented stent implantation and then conducted a perfusion MRI using ASL(Arterial Spin Labeling), in order to suggest a solution to them. The perfusion MRI was conducted, using pCASL among ASL methods. Data from pCASL(Pseudo Continuous Arterial Spin Labeling) was acquired together with the structural image simply by changing position(labeling gap 15 mm, 170 mm) of the labeling pulse to avoid stent. Data was processed through the ASLtbx. When perfusion MRI was acquired using pCASL, it showed that the position of the conventional labeling pulse (labeling gap 24 mm) was overlapped with that of stent, which made signal intensity in right brain tissue appear as if it were void. When the labeling pulse was positioned (labeling gap 15 mm) to avoid stent, high signal intensity images were acquired. In labeling pulse (labeling gap 170 mm), the signal intensity was more reduced due to relaxation before labeled blood arrived at the imaging slice. pCASL can be stably repeated measurements because it does not use a contrast agent. And it should be selected with the appropriate image acquisition parameters for the high quality image.

Monitoring Cerebral Perfusion Changes Using Arterial Spin-Labeling Perfusion MRI after Indirect Revascularization in Children with Moyamoya Disease

  • Seul Bi Lee;Seunghyun Lee;Yeon Jin Cho;Young Hun Choi;Jung-Eun Cheon;Woo Sun Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.9
    • /
    • pp.1537-1546
    • /
    • 2021
  • Objective: To assess the role of arterial spin-labeling (ASL) perfusion MRI in identifying cerebral perfusion changes after indirect revascularization in children with moyamoya disease. Materials and Methods: We included pre- and postoperative perfusion MRI data of 30 children with moyamoya disease (13 boys and 17 girls; mean age ± standard deviation, 6.3± 3.0 years) who underwent indirect revascularization between June 2016 and August 2017. Relative cerebral blood flow (rCBF) and qualitative perfusion scores for arterial transit time (ATT) effects were evaluated in the middle cerebral artery (MCA) territory on ASL perfusion MRI. The rCBF and relative time-to-peak (rTTP) values were also measured using dynamic susceptibility contrast (DSC) perfusion MRI. Each perfusion change on ASL and DSC perfusion MRI was analyzed using the paired t test. We analyzed the correlation between perfusion changes on ASL and DSC images using Spearman's correlation coefficient. Results: The ASL rCBF values improved at both the ganglionic and supraganglionic levels of the MCA territory after surgery (p = 0.040 and p = 0.003, respectively). The ATT perfusion scores also improved at both levels (p < 0.001 and p < 0.001, respectively). The rCBF and rTTP values on DSC MRI showed significant improvement at both levels of the MCA territory of the operated side (all p < 0.05). There was no significant correlation between the improvements in rCBF values on the two perfusion images (r = 0.195, p = 0.303); however, there was a correlation between the change in perfusion scores on ASL and rTTP on DSC MRI (r = 0.701, p < 0.001). Conclusion: Recognizing the effects of ATT on ASL perfusion MRI may help monitor cerebral perfusion changes and complement quantitative rCBF assessment using ASL perfusion MRI in patients with moyamoya disease after indirect revascularization.