• 제목/요약/키워드: Arsenic-contaminated soil

검색결과 169건 처리시간 0.013초

유기오염물의 분해에 의한 오염토양내 비소종 변화 영향

  • 천찬란;이상훈
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2002년도 총회 및 춘계학술발표회
    • /
    • pp.347-350
    • /
    • 2002
  • Arsenic speciation changes between As(V) and As(III) are subject to changes in accordance with redox conditions in the environment. It is common to find contaminated sites associated with mixed wastes including both organic pollutants and heavy metals. We conducted microcosm experiment under hypothesis that the co-disposed organic pollutants would influence on the arsenic forms and concentrations, via degradation of the organic pollutants and the consequent impact on the redox conditions in soil. Artificially contaminated soil samples were run for 40 days with control samples without artificial contamination. We noticed arsenic in the contaminated soil showed different behaviour compared with the arsenic in the control soil. The findings indicate degradation of organic pollutants in the contaminated soil influenced on the arsenic speciation and concentrations. A further work is needed to understand the process quantitatively. However, we could confirm that degradation of organic pollutants can influence on the abiotic processes associated with geochemical reactions in contaminated soil. Degradation of organic pollutants can increase the mobility and toxicity of arsenic in soil and sediment by changing redox conditions in the geological media and subsequently from As(V) to As(III).

  • PDF

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화 (Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed)

  • 고일하;김정은;김지숙;박미선;강대문;지원현
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제21권6호
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.

Analysis of arsenic in contaminated soil SRM by two extraction methods: Ultrasonic extraction method and Microwave extraction method

  • Kim, Youn-Tae;Yoon, Hyeon;Shin, Mi-Young;Yoon, Cheol-Ho;Woo, Nam-Chil
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.227-230
    • /
    • 2004
  • Two extraction techniques, Ultrasonic and Microwave extraction method, were tested for the determination of arsenic in contaminated soil SRM (Montana Soil). The extraction mixture was prepared by mixing 1 M ortho-phosphoric acid and 0.1 M ascorbic acid. This extractant was known to preserve arsenic species. The appropriate extraction time was 10 min to 20 min and the recovery rate was about 80%. A coupled system, SPE-HG-ICP-AES, was used for the determination of inorganic arsenic species. The detection limit was around 2 $\mu\textrm{g}$/1 and the linearity of calibration curve was better than $R^2$=0.99.

  • PDF

Simultaneous uptake of arsenic and lead using Chinese brake ferns (Pteris vittata) with EDTA and electrodics

  • Butcher, David J.;Lim, Jae-Min
    • 분석과학
    • /
    • 제32권1호
    • /
    • pp.1-6
    • /
    • 2019
  • Chinese brake fern (Pteris vittata) has potential for application in the phytoremediation of arsenic introduced by lead arsenate-based pesticides. In this study, Chinese brake ferns were used to extract arsenic, mainly in field and greenhouse experiments, and to assess the performance of simultaneous phytoaccumulation of arsenic and lead from homogenized soil in the greenhouse, with the application of EDTA and electric potential. The ferns have been shown to be effective in accumulating high concentrations of arsenic, and extracting both arsenic and lead from the contaminated soil, with the addition of a chelating agent, EDTA. The maximum increase in lead accumulation in the ferns was 9.2 fold, with a 10 mmol/kg addition of EDTA. In addition, the application of EDTA in combination with electric potential increased the lead accumulation in ferns by 10.6 fold at 5 mmol/kg of EDTA and 40 V (dc), compared to controls. Therefore, under application of EDTA and electric potential, Chinese brake fern is able to extract arsenic and lead simultaneously from soil contaminated by lead arsenate.

폐금속광산 지역의 비소오염토양 처리를 위한 선별 기술 적용 (Application of a Soil Separation System for the Remediation of Arsenic Contaminated Soil in a Metal Mining Area)

  • 박찬오;김종원;박준형;이영재;양인재;이재영
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제18권5호
    • /
    • pp.56-64
    • /
    • 2013
  • After the law has been enacted for the prevention and recovery of mining damage in 2005, efforts of remediation have been started to recover heavy metal contaminated soils in agricultural land near mining sites. As part of an effort, the upper part of cultivation layer has been treated through covering up with clean soil, but the heavy metal contamination could be still spreaded to the surrounding areas because heavy metals may be remained in the lower part of cultivation layers. In this study, the most frequently occurring arsenic (As) contamination was selected to study in agricultural land nearby an abandoned metal mining site. We applied separation technologies considering the differences in the physical characteristics of soil particles (particle size, density, magnetic properties, hydrophobicity, etc.). Based on physical and chemical properties of arsenic (As) containing particles in agricultural lands nearby mining sites, we applied sieve separation, specific gravity separation, magnetic separation, and flotation separation to remove arsenic (As)-containing particles in the contaminated soil. Results of this study show that the removal efficiency of arsenic (As) were higher in the order of the magnetic separation, flotation separation, specific gravity separation and sieve separation.

영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가 (Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag)

  • 임정은;김권래;이상수;권오경;양재의;옥용식
    • 대한환경공학회지
    • /
    • 제32권6호
    • /
    • pp.631-638
    • /
    • 2010
  • 다양한 오염원을 통해 토양에 유입된 비소는 작물을 통해 인체로 전이되어 심각한 질환을 유발한다. 특히 가금류 사료에 첨가되는 록살슨(roxarsone)의 경우 퇴비 중에 포함되어 토양으로 유입되면 독성이 강한 무기비소로 변환된다. 본 연구에서는 비소 오염토양의 안정화 공법 적용을 위해 산업부산물인 영가철과 제강슬래그를 투입하여 토양 내 비소의 안정화 연구를 수행하였다. 비소(무기비소)와 록살슨(유기비소)으로 오염된 토양에 영가철 및 제강슬래그를 0%(w/w), 1%(w/w), 3%(w/w), 5%(w/w) 처리하고 30일 간 반응시킨 후 비소의 저감정도를 살펴본 결과 왕수추출에 의한 비소의 총함량은 무처리구에서 비소 오염토양이 2,285 mg/kg, 록살슨 오염토양이 6.5 mg/kg으로 나타났다. 1 N HCl 가용성 비소는 비소 오염토양의 무처리구가 1,351 mg/kg, 영가철 처리구가 713~1,034 mg/kg로 무처리구 대비 최대 40% 이상 감소하였다. 제강슬래그 처리구의 경우 1 N HCl 가용성 비소농도가 소폭으로 감소하였으며 5% 처리구(1,245 mg/kg)에서 통계적으로 유의성 있는 감소효과가 나타났다. 록살슨 오염토양에서는 영가철 1~5% 처리 시 비소의 농도가 0.69~3.13 mg/kg으로 처리 간에 유의성 있게 감소하는 경향을 나타내었으며 제강슬래그의 처리는 통계적으로 유의성 있는 감소효과는 발생하지 않았다. 특히 록살슨 오염토양은 영가철과 제강슬래그 처리 시 검출되는 비소의 양이 무처리구보다 증가하는 것으로 나타나 유기비소인 록살슨이 무기비소로 변환되는 과정에서 영가철과 제강슬래그가 영향을 끼친 것으로 판단되었다. 0.01 M $CaCl_2$ 에 의한 추출(유효태 비소) 결과 비소오염토양의 무처리구 유효태 비소농도는 0.85 mg/kg, 영가철 5% 처리구에서 0.06 mg/kg 로 무처리구 대비 90% 이상 감소하였다. 비소오염토양에 대한 제강슬래그 처리에서는 제강슬래그에 함유된 인과 토양 내 비소가 경쟁하면서 처리량이 증가함에 따라 비소농도가 증가하였다. 록살슨 오염토양의 경우 영가철과 제강슬래그 처리량 증가에 따라 비소의 농도가 감소하였으나 무처리구에 비하여 비소가 높게 검출되었다. 이는 토양에 투입된 영가철과 제강슬래그가 유기비소에서 무기비소로의 변환과정에 영향을 준 것으로 판단된다. 특히 토양 내 인산과 비소는 철에 대해서 경쟁반응을 하는데 이는 영가철 처리 시 검출되는 비소농도에 영향을 미친 것으로 판단되었다.

달천광산 주변 토양 내 비소의 존재형태 및 토양세척법에 의한 제거 (Fractionation and the Removal of Arsenic-Contaminated Soils Around Dalchĕn Mine Using Soil Washing Process)

  • 한경욱;신현무
    • 한국환경과학회지
    • /
    • 제17권2호
    • /
    • pp.185-193
    • /
    • 2008
  • This study has been carried out to examine the feasibility of soil washing process for reducing arsenic contamination level of soil around $Dalch\hat{e}n$ Mine. The results of physicochemical tests of the target soil showed that pH was weak alkalic ($pH{\simeq}7.8$), soil texture was coarse sand, and organic contents (5.7%) and CEC (Cation exchange capacity; 21.5 meq/100 g) were similar with those of soils generally found in Korea. Contamination levels of arsenic were found to over 201 mg/kg which exceed the Korea standard levels of countermeasure and concern. To investigate chemical partitioning of heavy metals, sequential extraction procedures were adopted and it was found that arsenic was predominantly associated with the residual fraction among five fractional forms as much as over 85%, which is demonstrating that only less than 15% of all might be vulnerable to a selected washing agents. Among 6 kinds of washing agents applied on the screening for arsenic-contaminated soil, HCl and $H_3PO_4$ solution were selected as promising washing agents. In comparison with HCl and $H_3PO_4$ solutions for arsenic washing by kinetic experiment in the change of pH, soil-solution ratio, temperature, and washing solution concentration, $H_3PO_4$ solution was determined to best one of agents tested, which showed faster washing rate than HCl to accomplish regulatory goal.

개정 토양용출시험법에 따른 비소오염토양의 고형화/안정화 공법 국내 적용성 평가 (Assessment of applicability on Solidification/Stabilization of Arsenic in contaminated Soil According to the Revised Korean Standard Leaching Test for Soil)

  • 홍성혁;박혜민;최원호;박주양
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.1-5
    • /
    • 2011
  • Arsenic is one of the most abundant contaminant found in waste mine tailings and soil around refinery, Because of its carcinogenic property, the countries like United States of America and Europe have made stringent regulations which govern the concentration of arsenic in soil. The study focuses on solidification/stabilization for removal of arsenic from soil. Cement was used to solidify/stabilize the abandoned soil primarily contaminated with arsenic (up to 68.92 mg/kg) in and around refinery. Solidified/stabilized (s/s) forms in the range of cement contents 5-30 wt % were evaluated to determine the optimal binder content. Revised Korean standard leaching tests (KSLT), toxicity characteristic leaching procedures (TCLP), Old Korea standard leaching test and revised Korea standard leaching test were used for chemical characterization of the S/S forms. The addition of 10 % cement remarkably reduced the leachability of arsenic in contaminated soil. The concentration of As in leachate of TCLP, KSLT, and old KSLT for soil are below the standard. However that in leachate of revised KSLT is above the standard. Because of extraction fluid used in revised KSLT is very strong acid. It is arsenic in s/s with binder should be exhaustingly leached. Therefore S/S process would not be available for As treatment in soil in Korea.

광양 초남 금 광산 비소오염 토양의 지화학적 및 광물학적 특성 (Geochemical and Mineralogical Characterization of Arsenic-Contaminated Soil at Chonam Gold Mine, Gwangyang)

  • 공미혜;김유미;노열
    • 자원환경지질
    • /
    • 제44권3호
    • /
    • pp.203-215
    • /
    • 2011
  • 오염된 토양의 정화방법을 선정은 토양의 지화학적 및 광물학적 특성에 근거하여 선정되어야 오염된 토양을 적절하게 정화할 수 있다. 따라서 이 연구는 비소로 오염된 토양의 적절한 정하방법 선정을 위하여 비소의 존재형태를 알아보기 위하여 토양의 지화학적 및 광물학적 특성을 연구하였다. 이 연구를 위하여 전남 광양지역의 초남 금 광산의 비소로 오염된 토양을 이용하였다. 비소오염 토양의 지화학적 및 광물학적 특성을 알아보기 위하여 입도분리, 연속추출, 그리고 광물학적 분석을 실시하였다. 입도분석 결과에 따르면 비소오염토양의 무게백분율은 모래가 17-36%, 미사가 25-54%, 점토가 9-28%이며, 토성은 사양토(sandy loam), 양토(loam), 미사질 양토 (silt loam)로 나타났다. 토양의 pH는 폐 금광산 갱구 앞 토양이 4.5-6.6.으로 강산성내지 약산성을 띠었다. 비소오염 토양의 각 입도에 비소분포는 모래에 9-81%, 미사에 9-67%, 점토에 7-28% 분포하고 있었다. 연속추출 실험 결과, 비소는 철 산화물을 추출했을 때 1-75%로 검출되었으며, 추출 후 잔여물에 12-91% 잔존하고 있었다. 모래와 미사의 주 구성광물은 고령석, 사장석, 석영, 운모로 나타났으며, 부 구성광물은 철 산화물이다. 점토의 주 구성광물은 고령석, 석영, 운모, 질석이며, 부 구성광물은 철 산화물과 금홍석 은이다. 또한 점토 내 철 산화물과 운모에서 비소가 발견되었다. 이러한 결과는 비소가 철 산화물 또는 점토 광물 등에 흡착 또는 공침하여 존재하는 것으로 사료된다. 이는 비소로 오염된 토양의 지화학적 특성과 광물학적 특성을 통해 오염된 토양을 정화하는데 정보를 제공할 수 있을 것으로 사료된다.