• Title/Summary/Keyword: Arsenic Contaminated Soils

Search Result 111, Processing Time 0.028 seconds

Oxalic Acid-based Remediation of Arsenic-contaminated Soil (옥살산 기반의 비소오염토양 정화 연구)

  • Lee, Myeong Eun;Jeon, Eun-Ki;Kim, Jong-Gook;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Arsenic (As) usually is bound to amorphous iron oxides in the soils, and it can be removed via dissolution of iron oxides. Inorganic acid and chelating agent are widely used to extract As in the soil washing. However, the overall performance is highly dependent on the state of As fractionation. In this study, oxalic acid and inorganic acids (HCl, $H_2SO_4$, and $H_3PO_4$) were applied to enhance the dissolution of iron oxides for remediation of As-contaminated soils. Oxalic acid was most effective to extract As from soils and removal of As was two times greater than other inorganic acids. Additionally, 75% of As bound to amorphous iron oxides was removed by 0.2 M oxalic acid. Arsenic removal by oxalic acid was directly proportional to the sum of labile fractions of As instead of the total concentration of As. Therefore, the oxalic acid could extract most As bound to amorphous iron oxides.

Fundamental study on volume reduction of heavy metal-contaminated soil by magnetic separation

  • Konishi, Yusuke;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Large-scale civil engineering works discharge a large amount of soil suspension contaminated with natural heavy metals. Most of the heavy metal ions due to industrial activities and minings are accumulated in the soils and the sediments of lakes and inner bays through the rivers. It is necessary to remove heavy metals from the soils and the sediments, because some of these heavy metals, such as arsenic and cadmium, have significant biological effects even in small amounts. This study proposes a new volume reduction method of the contaminated soils and sediments by superconducting magnetic separation. Our process can remove the specific minute minerals selectively, which adsorbs heavy metals depending on pH. As a fundamental study, the adsorption behaviors of arsenic and cadmium on minute minerals as a function of pH were investigated, and the adsorption mechanism was discussed based on the crystal structure and pH dependence of surface potential in each minute minerals.

Growth and Heavy Metal Absorption Capacity of Aster koraiensis Nakai According to Types of Land Use (토지이용 형태별 벌개미취의 생육 및 중금속 흡수능)

  • Ju, Young-Kyu;Kwon, Hyuk-Jun;Cho, Ju-Sung;Shin, So-Lim;Kim, Tae-Sung;Choi, Su-Bin;Lee, Cheol-Hee
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • This study was performed to analyze the possibility of using Korean native Aster koraiensis Nakai for phytoremediation at various fields. A. koraiensis was cultivated at paddy, upland and forest soils contaminated with heavy metals. After 8 weeks of cultivation, and growth and its absorbing capacity of heavy metals were analyzed. The results showed that A. koraiensis was grown well even at the soil highly contaminated with heavy metals, which means it has a tolerance to heavy metals. As analysis results of arsenic, cadmium, copper, lead and zinc contents absorbed from various soils contaminated with heavy metals, heavy metal absorbing capacity of A. koraiensis was depending on the heavy metal contents in the soils and soil property. In case of arsenic, cadmium and copper, heavy metal accumulation capacities of Aster koraiensis were much influenced by contents of heavy metals in the soils. Absorbing capacity of plants was increased when heavy metal contents in the soils were high. Lead absorbing capacity was depending more on soil property than lead contents in the soil, and was great at sandy soil of forest. Zinc absorbing capacity was influenced by both soil properties and Zn contents in the soil, was increased at paddy soil contaminated with high concentrations of heavy metals and upland soils. In general, A. koraiensis had a tolerance to heavy metals and showed great absorbing capability of heavy metals. So A. koraiensis can be used as a good landscape material for phytoremediation at various soils contaminated with heavy metals.

Pilot-test for the Restoratoin of Contaminated Farmland using Industrial By-products (산업부산물을 이용한 오염농경지 복원을 위한 현장실증시험 적용)

  • Yu, Chan;Baek, Seung-Hwan;Yun, Sung-Wook;Park, Jin-Chul;Lee, Jung-Hoon;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.914-919
    • /
    • 2008
  • This present was carried out to evaluate the adaptability of stabilization method which was used industrial byproducts as the stabilization agency in the abandoned mine site. In order to investigate stabilization effect on As-contaminated soils treated by industrial by-products, batch tests and column tests were carried out with As-contaminated soils collected from farmland around the abandoned mine site. ZVI(zero valent iron) and SRS(steel refining slag) was shown a good treatment effect. After the column test, sequential extraction test and simple bioavailability extraction test(SBET) were carried out to analysis of the soil, and scanning electron micrograph(SEM) analysis was carried out to compare the morphology and structure of ZVI and SRS before and after reacting with arsenic in the soil. As a result, ZVI and SRS were shown 93%, 62% reduction of As concentration respectively by comparison with untreated soils. Therefore, if ZVI and SRS are used as treatment materials in As-contaminated soils, it is expected that the As leaching from soils is reduced effectively.

  • PDF

Leaching Characteristics on Arsenic Contaminated Soils after Stabilization Treatment (안정화 처리된 비소오염토양의 용출특성)

  • Yu, Chan;Park, Jin-Chul;Yoon, Sung-Wook;Baek, Seungh-Wan;Lee, Jung-Hun;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.920-925
    • /
    • 2008
  • In this presentation, a leaching experiment which is followed the pH changes(pH=4, pH=7) and the mixing rates(1%, 3%, 5%, 7%) was carried out to examine the arsenic reduction effects and the leaching characteristics on arsenic contaminated soil after stabilization treatment in which 5 materials were used as stabilization agencies, i.e. ZVI(zero valent iron), blast furnace slag, steel refining slag, quick lime, and oyster shell meal. Except for blast furnace slag, the arsenic removal rate increased as the mixing rate increases of stabilization agencies. Arsenic leaching concentration was indicated that pH=7 condition is higher than pH=4 condition. This result shows because arsenic immobilization reaction increases as pH decreases, and arsenic adsorption takes place as pH decreases.

  • PDF

Stabilization of As (arsenic(V) or roxarsone) Contaminated Soils using Zerovalent Iron and Basic Oxygen Furnace Slag (영가철(Zerovalent Iron)과 제강슬래그를 이용한 비소(V) 및 록살슨(Roxarsone) 오염토양의 비소 안정화 효율 평가)

  • Lim, Jung-Eun;Kim, Kwon-Rae;Lee, Sang-Soo;Kwon, Oh-Kyung;Yang, Jae-E;Ok, Yong-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.631-638
    • /
    • 2010
  • The objective of this study was to evaluate the efficiency of zerovalent iron and basic oxygen furnace slag on arsenic stabilization in soils. For this, arsenic (V) contaminated soil and roxarsone contaminated soil were incubated after incorporation with zerovalent iron (ZVI) or basic oxygen furnace slage (BOFS) at four different levels (0%, 1%, 3%, and 5%) for 30 days and then the residual concentrations of arsenic were analysed following extraction with aqua reqia, 1N HCl and 0.01 M $CaCl_2$. The total concentration of arsenic was 2,285 mg/kg in the As(V) contaminated soil and 6.5 mg/kg in the roxarsone contaminated soil. 1 N HCl extractable arsenic concentration in the As(V) contaminated soil was initially 1,351 mg/kg and this was significantly declined by 713~1,034 mg/kg following incubation with ZVI while BOFS treatment showed no effect on the stabilization of inorganic arsenate except 5% treatment which showed around 100 mg/kg reduction in 1N HCl extractable arsenic. Similarly, in the roxarsone contaminated soil 1N HCl extractable concentration of arsenic was reduced from 3.13 mg/kg to 0.69 mg/kg with ZVI treatment increased from 1% to 5% while BOFS treatment did not lead to any statistically significant reduction. Available (0.01M $CaCl_2$ extractable) arsenic was initially 0.85 mg/kg in the As(V) contaminated soil and this declined by 0.79 mg/kg following incorporation with 5% ZVI, which accounted for more than 90% of the available As in the control. When As(V)-contaminated soil was treated with BOFS, the available arsenic was increased due to competing effect of the phosphate originated from BOFS with arsenate for the adsorption sites. For the roxarsone contaminated soil, the greater the treatment of ZVI or BOFS, the lower the available arsenic concentration although it was still higher than that of the control.

Effect of Aging on the Chemical Forms and Phytotoxicity of Arsenic in Soil (비소 오염기간이 토양 내 비소의 존재형태와 식물독성에 미치는 영향)

  • Yang, Woojin;Jho, Eun Hea;Im, Jinwoo;Jeong, Seulki;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • This study investigates effects of an aging period on arsenic (As) chemical forms in soils and phytotoxicity using artificially As-contaminated soils with a range of As concentrations (0-300 mg/kg) and aging periods (0 and 3 months). A sequential extraction procedure showed that the increasing As concentration in soils increased the ratio of non-specifically and specifically bound As, which are known to be bioavailable. This resulted in increasing As uptake by tomatoes with increasing As concentration (R2=0.87 for exponential fitting); however, the seed germination was not sensitive to the As concentrations of the soil samples. The seed germination was also statistically similar in the soils with 75 and 150 mg-As/kg regardless of the aging period. The time taken until the seed germination (i.e., lag phase), on the other hand, decreased from 10 d to 3 d with aging for 3 months. This can be attributed to the decreased amount of bioavailable As with aging. Overall, this study shows that when the toxic effects of the As-contaminated soils are assessed using tomato plants, it is better to use more sensitive methods than seed germination such as the As accumulation or the lag phase for seed germination.

Identification of a Proper Phytoavailable Arsenic Extraction Method Associated with Arsenic Concentration in Edible Part of three Crops in Soils Near Abandoned Mining Areas

  • Yoon, Jung-Hwan;Kim, Young-Nam;Lee, Dan-Bi;Kim, Kwon-Rae;Kim, Won-Il;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.497-508
    • /
    • 2017
  • This study aimed to investigate correlations between concentrations of extractable Arsenic (As) with varying chemical solutions (0.1 M $Ca(NO_3)_2$, 0.1 M $(NH_4)2HPO_4$, 0.5 M EDTA, Mehlich 3, and 0.5 M $NaHCO_3$) and those of As in crops, and then to seek the most suitable soil extraction method for predicting the potential of As uptake in crops cultivated in soils contaminated with As. For a mesocosm experiment, pepper (Capsicum annuum L.), soybean (Glycine max L.), and rice (Oryza sativa L.) were cultivated for three months in pots containing soils taken from the arable areas near abandoned mines in Korea. Following the cultivation, soil pH and DOC significantly increased by treatments of lime and lime plus compost, respectively, while insignificant influences in changing total and all extractable As concentrations were found in all soils. Arsenic concentration in edible part of all crops considerably depended on the extractable As concentration in the soils, particularly with Mehlich 3. All extractable As concentrations in the soils of C. annuum and G. max were significantly correlated with As concentration in their edible parts. For O. sativa, the extractable concentrations of Mehlich 3 ($R^2$: 0.18 at p: 0.006) and EDTA ($R^2$: 0.11 at p: 0.036) showed only marked relationships with As concentration in the edible part. These results may indicate that the Mehlich 3 and EDTA are soil extractants to determine phytoavailable As in soil that provide better prediction for As transfer from soil to crop.