• 제목/요약/키워드: Arrhythmia classification

검색결과 79건 처리시간 0.028초

Personalized Specific Premature Contraction Arrhythmia Classification Method Based on QRS Features in Smart Healthcare Environments

  • Cho, Ik-Sung
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.212-217
    • /
    • 2021
  • Premature contraction arrhythmia is the most common disease among arrhythmia and it may cause serious situations such as ventricular fibrillation and ventricular tachycardia. Most of arrhythmia clasification methods have been developed with the primary objective of the high detection performance without taking into account the computational complexity. Also, personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Therefore it is necessary to design efficient method that classifies arrhythmia by analyzing the persons's physical condition and decreases computational cost by accurately detecting minimal feature point based on only QRS features. We propose method for personalized specific classification of premature contraction arrhythmia based on QRS features in smart healthcare environments. For this purpose, we detected R wave through the preprocessing method and SOM and selected abnormal signal sets.. Also, we developed algorithm to classify premature contraction arrhythmia using QRS pattern, RR interval, threshold for amplitude of R wave. The performance of R wave detection, Premature ventricular contraction classification is evaluated by using of MIT-BIH arrhythmia database that included over 30 PVC(Premature Ventricular Contraction) and PAC(Premature Atrial Contraction). The achieved scores indicate the average of 98.24% in R wave detection and the rate of 97.31% in Premature ventricular contraction classification.

헬스케어 환경에서 복잡도를 고려한 R파 검출과 이진 부호화 기반의 부정맥 분류방법 (R Wave Detection Considering Complexity and Arrhythmia Classification based on Binary Coding in Healthcare Environments)

  • 조익성;윤정오
    • 디지털산업정보학회논문지
    • /
    • 제12권4호
    • /
    • pp.33-40
    • /
    • 2016
  • Previous works for detecting arrhythmia have mostly used nonlinear method to increase classification accuracy. Most methods require accurate detection of ECG signal, higher computational cost and larger processing time. But it is difficult to analyze the ECG signal because of various noise types. Also in the healthcare system based IOT that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose R wave detection considering complexity and arrhythmia classification based on binary coding. For this purpose, we detected R wave through SOM and then RR interval from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. R wave detection and PVC, PAC, Normal classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 99.41%, 97.18%, 94.14%, 99.83% in R wave, PVC, PAC, Normal.

스마트 헬스케어 환경에서 복잡도를 고려한 R파 검출 및 QRS 패턴을 통한 향상된 부정맥 분류 방법 (R Wave Detection and Advanced Arrhythmia Classification Method through QRS Pattern Considering Complexity in Smart Healthcare Environments)

  • 조익성
    • 디지털산업정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.7-14
    • /
    • 2021
  • With the increased attention about healthcare and management of heart diseases, smart healthcare services and related devices have been actively developed recently. R wave is the largest representative signal among ECG signals. R wave detection is very important because it detects QRS pattern and classifies arrhythmia. Several R wave detection algorithms have been proposed with different features, but the remaining problem is their implementation in low-cost portable platforms for real-time applications. In this paper, we propose R wave detection based on optimal threshold and arrhythmia classification through QRS pattern considering complexity in smart healthcare environments. For this purpose, we detected R wave from noise-free ECG signal through the preprocessing method. Also, we classify premature ventricular contraction arrhythmia in realtime through QRS pattern. The performance of R wave detection and premature ventricular contraction arrhythmia classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction. The achieved scores indicate the average of 98.72% in R wave detection and the rate of 94.28% in PVC classification.

심전도 신호의 리듬 특징을 이용한 부정맥 검출 (Arrhythmia Detection Using Rhythm Features of ECG Signal)

  • 김성완
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.131-139
    • /
    • 2013
  • 본 논문에서는 먼저 심전도 진단을 위한 처리 과정별 관련 연구내용을 살펴본 후 심전도 신호의 리듬 특징을 이용하여 부정맥을 검출 및 분류하는 방법을 제안한다. 특징 추출에서는 리듬 구간에 대하여 동일성 및 규칙성 등의 리듬 및 심박 분포에 관련되는 특징을 추출하게 되며, 리듬 분류에서는 리듬 구간의 특징에 대하여 미리 구축된 규칙 베이스를 이용하여 리듬 유형을 분류하게 된다. MIT-BIH 부정맥 데이터베이스의 모든 리듬 유형에 대한 실험을 통하여 정상 리듬 규칙만으로도 100% 부정맥 검출 성능을 보였으며, 부정맥 리듬 규칙으로는 유형 분류 적용 가능성을 확인하였다.

AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 (Parameter Extraction for Based on AR and Arrhythmia Classification through Deep Learning)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제24권10호
    • /
    • pp.1341-1347
    • /
    • 2020
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 인공 지능 기반의 부정맥 분류에 많이 사용되고 있다. 본 연구에서는 AR 기반의 특징점 추출과 딥러닝을 통한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 자기 회귀 모델을 통하여 최적의 QRS와 RR간격을 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 부정맥을 분류하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 훈련 및 분류 정확도를 확인하였다. 성능 평가 결과 PVC는 약 97% 이상의 평균 분류율을 나타내었다.

A Feature Selection-based Ensemble Method for Arrhythmia Classification

  • Namsrai, Erdenetuya;Munkhdalai, Tsendsuren;Li, Meijing;Shin, Jung-Hoon;Namsrai, Oyun-Erdene;Ryu, Keun Ho
    • Journal of Information Processing Systems
    • /
    • 제9권1호
    • /
    • pp.31-40
    • /
    • 2013
  • In this paper, a novel method is proposed to build an ensemble of classifiers by using a feature selection schema. The feature selection schema identifies the best feature sets that affect the arrhythmia classification. Firstly, a number of feature subsets are extracted by applying the feature selection schema to the original dataset. Then classification models are built by using the each feature subset. Finally, we combine the classification models by adopting a voting approach to form a classification ensemble. The voting approach in our method involves both classification error rate and feature selection rate to calculate the score of the each classifier in the ensemble. In our method, the feature selection rate depends on the extracting order of the feature subsets. In the experiment, we applied our method to arrhythmia dataset and generated three top disjointed feature sets. We then built three classifiers based on the top-three feature subsets and formed the classifier ensemble by using the voting approach. Our method can improve the classification accuracy in high dimensional dataset. The performance of each classifier and the performance of their ensemble were higher than the performance of the classifier that was based on whole feature space of the dataset. The classification performance was improved and a more stable classification model could be constructed with the proposed approach.

The Classification of Electrocardiograph Arrhythmia Patterns using Fuzzy Support Vector Machines

  • Lee, Soo-Yong;Ahn, Deok-Yong;Song, Mi-Hae;Lee, Kyoung-Joung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제11권3호
    • /
    • pp.204-210
    • /
    • 2011
  • This paper proposes a fuzzy support vector machine ($FSVM_n$) pattern classifier to classify the arrhythmia patterns of an electrocardiograph (ECG). The $FSVM_n$ is a pattern classifier which combines n-dimensional fuzzy membership functions with a slack variable of SVM. To evaluate the performance of the proposed classifier, the MIT/BIH ECG database, which is a standard database for evaluating arrhythmia detection, was used. The pattern classification experiment showed that, when classifying ECG into four patterns - NSR, VT, VF, and NSR, VT, and VF classification rate resulted in 99.42%, 99.00%, and 99.79%, respectively. As a result, the $FSVM_n$ shows better pattern classification performance than the existing SVM and FSVM algorithms.

Auto Regressive모델링 기반의 특징점 추출과 Support Vector Machine을 통한 조기수축 부정맥 분류 (Feature Extraction based on Auto Regressive Modeling and an Premature Contraction Arrhythmia Classification using Support Vector Machine)

  • 조익성;권혁숭;김주만;김선종
    • 한국정보통신학회논문지
    • /
    • 제23권2호
    • /
    • pp.117-126
    • /
    • 2019
  • 부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경망, 퍼지, 시계열 주파수 분석, 비선형 분석법 등이 연구되어 왔다. 이러한 방법들은 분류율를 향상시키기 위해 정확한 특징점과 많은 양의 신호를 처리해야 하기 때문에 데이터의 가공 및 연산이 복잡하며, 다양한 부정맥을 분류하는데 어려움이 있다. 본 연구에서는 AR(Auto Regressive) 모델링 기반의 특징점 추출과 SVM(Support Vector Machine)을 통한 조기수축 부정맥 분류 방법을 제안한다. 이를 위해 잡음을 제거한 ECG 신호에서 R파를 검출하고 QRS와 RR 간격의 특정 파형 구간을 모델링하였다. 이후 최적 세그먼트 길이(n1, n2), 최적 차수( p1, p2)의 4가지 AR 모델링 변수를 추출하고 SVM을 통해 Normal, PVC, PAC를 분류하였다. 연구의 타당성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 대상으로 한 R파의 평균 검출 성능은 99.77%, Normal, PVC, PAC 부정맥은 각각 99.23%, 97.28, 96.62의 평균 분류율을 나타내었다.

부정맥 분류 결과의 축약에 기반한 유사환자 검색기 (A Search for Analogous Patients by Abstracting the Results of Arrhythmia Classification)

  • 박주영;강경태
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권7호
    • /
    • pp.464-469
    • /
    • 2015
  • 모바일 기기를 활용한 홀터 모니터링으로 환자의 개인별 심전도 신호의 장주기 수집이 가능해졌다. 하지만 이에 따른 의사 결정 지원 도구 및 응용에 대한 연구는 미흡한 실정이다. 본 논문에서는 장주기로 수집된 심전도 신호의 대표패턴을 추출하기 위한 축약 알고리즘을 제안한다. 그리고 추출된 대표패턴을 이용하여 유사한 환자의 목록을 제공하는 검색기를 소개한다. 사례분석을 통해 제안한 유사환자 검색기가 대표패턴을 통해 전문가의 임상활동을 간소화 하며, 유사한 환자의 목록을 제공하여 축적 데이터의 높은 활용 가능성을 제고함을 보였다. 또한, MIT-BIH 부정맥 데이터베이스를 이용한 평가에서, 축약 알고리즘이 64%의 레코드에 대해 단순화된 대표패턴을 제공하며, 부정맥 분류 결과를 평균 98% 축소함을 보였다.

GAN 오버샘플링 기법과 CNN-BLSTM 결합 모델을 이용한 부정맥 분류 (Arrhythmia Classification using GAN-based Over-Sampling Method and Combination Model of CNN-BLSTM)

  • 조익성;권혁숭
    • 한국정보통신학회논문지
    • /
    • 제26권10호
    • /
    • pp.1490-1499
    • /
    • 2022
  • 부정맥이란 심장이 불규칙한 리듬이나 비정상적인 심박동수를 갖는 것을 말하며, 뇌졸중, 심정지 등을 유발하거나 사망에도 이를 수 있는 만큼, 조기 진단과 관리가 무엇보다 중요하다. 본 연구에서는 심전도 신호의 QRS 특징 추출에 적합한 CNN과 기존 LSTM의 직전 패턴의 수렴 한계를 해결할 수 있는 BLSTM을 연결한 CNN-BLSTM 결합 모델을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 전처리 과정을 통해 잡음을 제거한 심전도 신호에서 QRS 특징점을 검출하고 단일 비트 세그먼트를 추출하였다. 이때 데이터의 불균형 문제를 해결하기 위해 GAN 오버샘플링 기법을 적용하였다. 이 후 합성곱 계층을 통해 부정맥 신호의 패턴을 정밀하게 추출하도록 구성하고 이를 BLSTM의 입력으로 사용한 후 매개변수를 학습시키고 검증 데이터로 학습 모델을 평가한 후 부정맥 분류의 정확도를 확인하였다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스를 이용하여 분류의 정확도, 정밀도, 재현율, F1-score를 비교하였다. 성능평가 결과 각각 99.30%, 98.70%, 97.50%, 98.06%로 우수한 분류율을 나타내는 것을 확인할 수 있었다.