• Title/Summary/Keyword: Arrhythmia Detection

Search Result 98, Processing Time 0.021 seconds

Adaptive Detection of Unusual Heartbeat According to R-wave Distortion on ECG Signal (심전도 신호에서 R파 왜곡에 따른 적응적 특이심박 검출)

  • Lee, SeungMin;Ryu, ChunHa;Park, Kil-Houm
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.200-207
    • /
    • 2014
  • Arrhythmia electrocardiogram signal contains a specific unusual heartbeat with abnormal morphology. Because unusual heartbeat is useful for diagnosis and classification of various diseases, such as arrhythmia, detection of unusual heartbeat from the arrhythmic ECG signal is very important. Amplitude and kurtosis at R-peak point and RR interval are characteristics of ECG signal on R-wave. In this paper, we provide a method for detecting unusual heartbeat based on these. Through the value of the attribute deviates more from the average value if unusual heartbeat is more certainly, the proposed method detects unusual heartbeat in order using the mean and standard deviation. From 15 ECG signals of MIT-BIH arrhythmia database which has R-wave distortion, we compare the result of conventional method which uses the fixed threshold value and the result of proposed method. Throughout the experiment, the sensitivity is significantly increased to 97% from 50% using the proposed method.

PVC Detection Based on the Distortion of QRS Complex on ECG Signal (심전도 신호에서 QRS 군의 왜곡에 기반한 PVC 검출)

  • Lee, SeungMin;Kim, Jin-Sub;Park, Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.731-739
    • /
    • 2015
  • In arrhythmia ECG signal, abnormal beat that has various abnormal shape depending on the generation site and conduction disorders is included and it is very important to diagnose heart disease such as arrhythmia. In this paper, we propose a PVC abnormal beat detection algorithm associated with ventricular disease. The PVC abnormal beat is characterized by distortion of the QRS complex occurs among the components of the ECG signal. Therefore it is possible to detect PVC abnormal beat according to the degree of distortion of the QRS complex. First, quantify the distortion of the QRS complex by using the potential of the R-peak, kurtosis and period. By using the mean and standard deviation, PVC abnormal beat is detected depending on the degree of distortion from the normal beat. The proposed algorithm can detect the average over 98% of the AAMI-V class type abnormal beat associated with ventricular disease in MIT-BIH arrhythmia database.

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

Arrhythmia Classification based on Binary Coding using QRS Feature Variability (QRS 특징점 변화에 따른 바이너리 코딩 기반의 부정맥 분류)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1947-1954
    • /
    • 2013
  • Previous works for detecting arrhythmia have mostly used nonlinear method such as artificial neural network, fuzzy theory, support vector machine to increase classification accuracy. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to design efficient algorithm that classifies different arrhythmia in realtime and decreases computational cost by extrating minimal feature. In this paper, we propose arrhythmia detection based on binary coding using QRS feature varibility. For this purpose, we detected R wave, RR interval, QRS width from noise-free ECG signal through the preprocessing method. Also, we classified arrhythmia in realtime by converting threshold variability of feature to binary code. PVC, PAC, Normal, BBB, Paced beat classification is evaluated by using 39 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 97.18%, 94.14%, 99.83%, 92.77%, 97.48% in PVC, PAC, Normal, BBB, Paced beat classification.

Wearable Approach of ECG Monitoring System for Wireless Tele-Home Care Application

  • Kew, Hsein-Ping;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.337-340
    • /
    • 2009
  • Wireless tele-home-care application gives new possibilities for ECG (electrocardiogram) monitoring system with wearable biomedical sensors. Thus, continuously development of high convenient ECG monitoring system for high-risk cardiac patients is essential. This paper describes to monitor a person's ECG using wearable approach. A wearable belt-type ECG electrode with integrated electronics has been developed and has proven long-term robustness and monitoring of all electrical components. The measured ECG signal is transmitted via an ultra low power consumption wireless sensor node. ECG signals carry a lot clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed thus it bring errors due to motion artifacts and signal size changes. Variable threshold method is used to detect the R-peak which is more accurate and efficient. In order to evaluate the performance analysis, R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research. This concept able to allow patient to follow up critical patients from their home and early detecting rarely occurrences of cardiac arrhythmia.

  • PDF

A Design of Real-Time QRS Detection in Physio-Module for Echocardiography (심초음파용 실시간 심전도 QRS 검출 모듈에 관한 연구)

  • Jang, Won-Seuk;Kim, Nam-Hyun;Kim, Eong-Sok;Jeon, Dae-Keun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.40-47
    • /
    • 2010
  • In this study, we investigated the performance of real-time QRS complex detection algorithm in physio-module for echocardiography. The performance of QRS detection module in echocardiography was evaluated according to international standard, EC-13 and we compared with commercialized physio-module with QRS complex detection. In this study, we can get performance of QRS complex detection, pacer pulse detection, Tall t-wave rejection and arrhythmia detection within EC-13's criteria and we can get improved QRS trigger delay time and baseline wondering rejection times in compared with commercialized physio-module.

R Wave Detection Algorithm Based Adaptive Variable Threshold and Window for PVC Classification (PVC 분류를 위한 적응형 문턱치와 윈도우 기반의 R파 검출 알고리즘)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11B
    • /
    • pp.1289-1295
    • /
    • 2009
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation like ventricular fibrillation and ventricular tachycardia in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Particularly, in the healthcare system that must continuously monitor people's situation, it is necessary to process ECG signal in realtime. In other words, design of algorithm that exactly detects R wave using minimal computation and classifies PVC is needed. So, R wave detection algorithm based adaptive threshold and window for the classification of PVC is presented in this paper. For this purpose, ECG signals are first processed by the usual preprocessing method and R wave was detected and adaptive window through R-R interval is used for efficiency of the detection. The performance of R wave detection and PVC classification is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate 99.33%, 88.86% accuracy respectively for R wave detection and PVC classification.

The Detection of PVC based Rhythm Analysis and Beat Matching (리듬분석과 비트매칭을 통한 조기심실수축(PVC) 검출)

  • Jeon, Hong-Kyu;Cho, Ik-Sung;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2391-2398
    • /
    • 2009
  • Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Most of the algorithms detecting PVC reported in literature is not always feasible due to the presence of noise and P wave making the detection difficult, and the process being time consuming and ineffective for real time analysis. To solve this problem, a new approach for the detection of PVC is presented based rhythm analysis and beat matching in this paper. For this purpose, the ECG signals are first processed by the usual preprocessing method and R wave was detected. The algorithm that decides beat type using the rhythm analysis of RR interval and beat matching of QRS width is developed. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate sensitivity of 99.74%, positive predictivity of 99.81% and sensitivity of 93.91%, positive predictivity of 96.48% accuracy respectively for R wave and PVC detection.

A Study on a Healthcare System Using Smart Clothes

  • Lim, Chae Young;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.372-377
    • /
    • 2014
  • Being able to monitor the heart will allow the diagnosis of heart diseases for patients during daily activities, and the detection of burden on the heart during strenuous exercise. Furthermore, with the help of U-health technology, immediate medical action can be taken, in the case of abnormal symptoms of the heart in daily life. Therefore, it appears to be necessary to develop the corresponding technology to monitor the condition of the heart daily. In this study, a novel wearable smart system was proposed, to monitor the activity of the heart in daily life, and to further evaluate the rhythm of arrhythmia. The wearable system includes three modified bipolar conductive fiber electrodes in the chest part, which can resolve the reduction problem of the magnitude of the signal, by magnifying the signal and removing the noise, to obtain high affinity and validity for medical-type usage (<0.903%). The biological signal acquisition and data lines, and the signal processing engine and communication consist of a conductive ink, and the pic18 and ANT protocol nRF24AP2, respectively. The proposed algorithm was able to detect a strong ECG, signal and r-point passing over the noise. The confidence intervals were 96 %, which could satisfy the requirement to detect arrhythmia under the unconstrained conditions.