• Title/Summary/Keyword: Arrhenius parameters

Search Result 85, Processing Time 0.032 seconds

A Study on the Combustion and Smoke Emission Characteristics of the Natural Aspiration Type Diesel Engine (자연흡기식 디젤 기관의 연소와 매연 배출 특성에 관한 실험적 연구)

  • 정우인;박찬국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.70-83
    • /
    • 1997
  • We made a selection of engine operating conditions in the natural aspiration type diesel engine as load and speed. The effects on the power, smoke emission and cylinder pressure characteristics of these variations in operating conditions were observed experimentally. Also, the smoke emission was predicted by using the Arrhenius equation and empirical equation of the smoke emission was made. At the same time, the correlations, between the combustion and smoke emission characteristic were examined. From the above results, it is clear that to prevent power dropping and to decrease exhaust fume whin the conditions are changed, one should improve the intake system. To do this, the best way is to lower the air-fuel mixing ratio. We found that the parameters of the indicated mean effective pressure, maximum pressure and its location and combustion duration, etc. change the motion in accordance with the conditions described above. Also, we found that the variation of the pressure cycle comes from an amplified variation of the early part of process. From the analysis of comparing combustion and exhaust fume, the exhaust fume is produced at the latter time of combustion and decreased when the combustion ratio is higher. Also, we developed a special formula which can predict the exhaust fume value according to the engine load and speed.

  • PDF

Dehydration Kinetics of Rehmannia (Rehmannia glutinosa Liboschitz)

  • Rhim, Jong-Whan;Kim, Ji-Hye;Jeong, Won-Chul
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.771-777
    • /
    • 2007
  • Sliced and whole root of rehmannia were dehydrated in a laboratory dryer at 40, 60, 80, and $100^{\circ}C$ to evaluate the kinetic parameters for dehydration of rehmannia. The drying curves of both samples were characterized by a falling-rate drying period only. Sliced rehmannia dried 1.1 to 3.1 times faster than whole root of rehmannia depending on drying temperature. Equilibrium moisture content (EMC) of rehmannia samples at the drying temperature tested were 0.069-0.078 g water/g dry solid, which was coincided with the monolayer moisture content (0.06 and 0.07 g water/g dry solid) evaluated from desorption isotherms using GAB (Guggenheim-Anderson-de Boer) model. A logarithmic model for thin layer drying was applied to evaluate the drying time to reach EMC ($t_{EMC}$) and drying constant (k). The effect of temperature on $1/t_{EMC}$ and k was described by the Arrhenius model with activation energy values of 32.56 and 47.14 kJ/mol determined using the former parameter, and 34.27 and 38.26 kJ/mol determined using the latter parameter for sliced and whole root of rehmannia, respectively.

Preparation of High Molecular Weight Poly(methyl methacrylate) with High Yield by Room Temperature Suspension Polymerization of Methyl Methacrylate

  • Lyoo, Won-Seok;Noh, Seok-Kyun;Yeum, Jeong-Hyun;Kang, Gu-Chan;Ghim, Han-Do;Lee, Jinwon;Ji, Byung-Chul
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • To obtain high molecular weight (HMW) poly(methyl methacrylate) (PMMA) with high conversion, methyl methacrylate (MMA) was polymerized in suspension using a room temperature initiator, 2,2'-azobis(2,4-dimethylvaleronitrile) (ADMVN), and the effects of polymerization conditions on the polymerization behavior of MMA and the molecular parameters of PMMA were investigated. On the whole, the experimental results well corresponded to the theoretically predicted tendencies. These effects could be explained by a kinetic order of ADMVN concentration calculated by an initial rate method and an activation energy difference of polymerization obtained from the Arrhenius plot. Suspension polymerization at 25℃ by adopting ADMVN proved to be successful in obtaining PMMA of HMW (number-average degree of polymerization (P/sub n/): 30,900-36,100) and of high yield (ultimate conversion of MMA into PMMA: 83-93 %) with diminishing heat generated during polymerization. The P/sub n/ and lightness were higher and polydispersity index was lower with PMMA polymerized at lower temperatures.

Theoretical analysis on the cool storage system using clathrates (포접화합물을 이용한 축냉시스템에 대한 이론적 해석)

  • Chung, J.D.;Jung, I.S.;Yoo, H.;Lee, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.343-353
    • /
    • 1997
  • This paper presents a theoretical model for predicting transient behaviors during storage process of the cool storage system using the R141b clathrate. Introduction of the lumped capacitance method along with a brine reservoir having large thermal capacity yields a set of simplified energy equations. Based on the Arrhenius equation and the known experimental findings, the formation rate of clathrate for which the degree of subcooling is properly accounted is newly developed. An effective nondimensionalization of the model equations facilitates the closure of modeling as well as parametric study. Calculated results for a specific case not only simulate a typical pattern of temperautre variation in the tank successfully, but also agree reasonably well with available data. The effect of each characteristic parameter on the system performance is also investigated. It is revealed that the dominant among relevant parameters are the activation energy of reaction, the degree of subcoling and the initial mass fraction of refrigerant. Finally, the uncertainty associated with modeling of the shaft work variation appears to need further studies.

  • PDF

Pyrolysis of PE plastics in the batch type microreactor (회분식 미분반응기를 이용한 PE계 플라스틱의 열분해특성 연구)

  • Kim, Sang-Hoon;Jang, Hyun-Tae;Cha, Wang-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.632-638
    • /
    • 2007
  • Pyrolysis experiments of HDPE and LDPE were carried out in the stainless steel reactor of internal volume of 40 $cm^3$. Pyrolysis reactions were performed at temperature $410{\sim}460^{\circ}C$ and the pyrolysis products were collected separately as liquid and gas products. The molecular weight distributions(MWDs) and composition of each product were determined by HPLC-GPC and GC analysis. It was represented that the yield and the molecular weight of liquid product were decreased with the increase of reaction temperature and time. The chain-end scission rate parameters, respectively, were determined to be 63.0kcal/mole of HDPE, 45.7kcal/mole of LDPE by the Arrhenius plot.

  • PDF

Electrocatalytic Effects for the Reduction of Thionyl Chloride in $Li/SOCl_2$ Cell Containing Schiff Base Metal(II) Complexes

  • Kim, Woo-Seong;Chung, Kwang-Il;Kim, Shin-Kook;Jeon, Seung-Won;Kim, Yeon-Hee;Sung, Yung-Eun;Choi, Yong-Kook
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.571-576
    • /
    • 2000
  • Electrocatalytic effects for the reduction of thionyl chloride in $LiAICI_4/SOCl_2$ electrolyte solution containing Schiff base M(II) (M; Co and Fe) complexes are evaluated by determining kinetic parameters with cyclic voltammetry and chronoamperometry at a glassy carbon electrode. The charge transfer process during the reduction of thionyl chloride is affected by the concentration of the catalyst. The catalytic effects are demonstrated from both a shift of the reduction potential for the thionyl chloride toward a more positive direction and an increase in peak currents. Catalytic effects are larger in thionyl chloride solutions containing the binuclear [M(II) $_2$ (TSBP)] complex rather than mononuclear [M(II)(BSDT)] complexes. Significant improvements in the cell performance have been noted in terms of both thermodynamics and activation energy for the thionyl chloride reduction. The activation energy calculated from the Arrhenius plots is 4.5-5.9 kcal/mole at bare glassy carbon electrodes. The activation energy calculated for the catalyst containing solution is 3.3-4.9 kcalmole, depending on whether the temperature is lowered or rasied.

A Kinetic Study of Br Atom Reactions with Trimethylsilane by the VLPR (Very Low Pressure Reactor) Technique$^1$

  • Choo Kwang Yul;Choe Mu Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.196-202
    • /
    • 1985
  • A Very Low Pressure Reactor (VLPR) is constructed for the kinetic study of atom-molecule bimolecular elementary reactions. The basic principles and the versatility of the method are described. By using the VLPR technique the forward (k1) and the reverse (k-1) rate constants for Br atom reaction with trimethylsilane are studied; Br + $(CH_3)_3$SiH k1 ${\leftrightarrow}$ k-1 HBr + $(CH_3)_3$Si. From the kinetic data and the entropy estimation the bond dissociation energy for Si-H bond in trimethylsilane is calculated to be 90.1 kcal/mole $({\pm}1.1$ kcal/mole). The Arrhenius parameters for k1 are found to be log A = 10.6 l/mole·sec, $E_a$ = 4.4 kcal/mole respectively. For the comparison purpose analogous reaction for carbon compound ; Br + $(CH_3)_3$CH ${\rightarrow}$ HBr + $(CH_3)_3$C was also studied. The corresponding rate constant and equilibrium constant at $25^{\circ}C$ are found to be 2.67 ${\times}$ $10^6l$/mole${\cdot}$sec and 160 respectively.

A Gas Phase Kinetic Study on the Thermal Decomposition of $ClCH_2CH_2CH_2Br$

  • Kim, Sung-Hoon;Choo, Kwang-Yul;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.262-269
    • /
    • 1989
  • The gas phase thermal decomposition of 1-bromo-3-chloropropane in the presence of radical inhibitor was studied by using the conventional static system. The mechanism of unimolecular elimination channel is shown below. [...] In this scheme, the total molecular dissociation rate constant, ($k_1\;+\;k_2$), for the decomposition of $BrCH_2CH_2CH_2Cl$ was determined by pyrolyzing the $BrCH_2CH_2CH_2Cl$ in the temperature range of $380-420^{\circ}C$ and in the pressure range of 10∼100 torr. To obtain $k_3\;and\;k_4,\;and\;to\;obtain\;k_1\;and\;k_2$ independently, the thermal decompositions of allyl chloride and allyl bromide were also studied. The Arrhenius parameters for each step are as follows; $log\;A_{\infty}\;=\;14.20(sec^{-1}),\;E_a$ = 56.10(kcal/mol) for reaction path 1; $log\;A_{\infty}\;=\;12.54(sec^{-1}),\;E_a$ = 49.75(kcal/mol) for reaction path 2; $log\;A_{\infty}\;=\;13.41(sec^{-1}),\;E_a$ = 50.04(kcal/mol) for reaction path 3; $log\;A_{\infty}\;=\;12.43(sec^{-1}),\;E_a$ = 52.78(kcal/mol) for reaction path 4; Finally, the experimentally observed pressure dependence of the rate constants in each step is compared with the theoretically predicted values that are obtained by the RRKM calculations.

An NMR Study on Complexation of Ortho-Xylyl-17-Crown-5 with $^{7}Li\;and\;^{23}Na$ Ions in Acetonitrile

  • 윤신영;안상두;이조웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.265-269
    • /
    • 1995
  • Complexation of ortho-xylyl-17-crown-5 (X17C5) with alkali metal ions in acetonitrile was studied by 7Li and 23Na NMR spectroscopy. The complex formation constants of X17C5 with LiI, LiSCN, NaI, and NaSCN were determined by investigating the changes in the chemical shifts as a function of the concentration ratio of X17C5 to metal ion. It was found that X17C5 forms 1:1 complex with Li+ and Na+ ions and the log Kf's for the complexation with LiI, LiSCN, NaI, and NaSCN were determined to be 2.88, 2.43, 2.53, and 2.30, respectively. In particular, the kinetics of complexation of X17C5 with Na+ was investigated by the method of 23Na NMR lineshape analysis. Activation energies were determined from Arrhenius plot of the resultant rate constant data to be 25.4 kJ/mol for NaI and 15.1 kJ/mol for NaSCN. Other kinetic parameters were also calculated by employing the Eyring equation. The decomplexation rates measured were 1.82 × 104 M-1s-1 for NaI and 1.50 × 104 M-1s-1 for NaSCN. It is concluded that the decomplexation mechanism is predominantly a bimolecular cation exchange for both cases.

Investigation of the Acceleration Coefficient in Acceleration Models (가속모델의 가속계수 조사)

  • Hyunjong Park;Sungjun Kim;Beomsik Park;Somi Park;Siil Sung
    • Journal of Korean Society for Quality Management
    • /
    • v.52 no.1
    • /
    • pp.135-148
    • /
    • 2024
  • Purpose: This study is to investigate the literature on accelerated tests based on the acceleration model and to provide a compilation of results on the parameters applied in the acceleration model and the test conditions. Methods: This research is conducts a literature review on accelerated tests using the acceleration model, with a focus on test targets, test conditions, and parameter values. The study is organizing the results of this literature review to facilitate their application in the design of reliability tests. Results: A literature review investigated a variety of test targets, test conditions, and parameter values. Conclusion: The results of the literature research conducted revealed various acceleration model parameter. Such literature research on accelerated tests can establish the foundation for reliability test design and contribute to future product development and quality improvement