• Title/Summary/Keyword: Arrhenius model by extrapolation

Search Result 2, Processing Time 0.015 seconds

Analysis of Degradation Behaviors of Geomembrane by Accelerated Test under UV Exposure Conditions (자외선 노출조건 하에서 가속시험에 의한 지오멤브레인의 분해거동 해석)

  • Park, Yeong Mog;Khan, Belas Ahmed;Jeon, Han Yong
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.5-14
    • /
    • 2013
  • In this paper the effect of UV (ultraviolet) exposure on HDPE (high density polyethylene)-smooth and f-PP (flexible polypropylene) geomembranes is evaluated under UVB-313 (ultraviolet wavelength 290-315 nm) exposure. Tensile property, melt flow index (MFI), oxidation induction time (OIT), both standard-OIT and high pressure-OIT and Fourier transform infrared spectroscopy/attenuated total reflectance (FTIR/ATR) results are discussed. Although tensile properties of the exposed geomembrane samples remained unchanged, the depletion of antioxidants was found higher for f-PP than for HDPE geomembrane. Arrhenius model by extrapolation was used on the data to predict the antioxidant lifetime to a typical site temperature of $20^{\circ}C$. There was no significant difference between the MFI value of the virgin and UV exposed HDPE geomembrane samples but a decrease in MFI was found in f-PP geomembrane that signifies that crosslinking has occurred. From FTIR spectra, the small peak (near $1750\;cm^{-1}$) observed in the spectrum of UV exposed sample corresponds to a carbonyl (C=O) linkage, which suggests that oxidation has occurred in the polymer structure, and another new band for f-PP between 3100 and $3500\;cm^{-1}$ is attributed to a hydroxyl bond and/or hydroperoxide bond.

Hydrothermal Acid Pretreatment of Chlamydomonas reinhardtii Biomass for Ethanol Production

  • Nguyen, Minh Thu;Choi, Seung-Phill;Lee, Jin-Won;Lee, Jae-Hwa;Sim, Sang-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.161-166
    • /
    • 2009
  • Certain microalgae have been known to use light and various carbon sources to produce carbohydrates, mainly in the form of starch. This is one of the pertinent feedstocks replacing agricultural products for the production of bioethanol by yeast. This study focuses upon dilute acid hydrothermal pretreatments at low cost and high efficiency to compete with current methods, and employs Chlamydomonas reinhardtii UTEX 90 as the feedstock. With dry cells of 5%(w/v), the algal biomass was pretreated with sulfuric acid(1-5%) under temperatures from 100 to $120^{\circ}C$, from 15 to 120 min. As a result, the glucose release from the biomass was maximum at 58%(w/w) after pretreatment with 3% sulfuric acid at $110^{\circ}C$ for 30 min. This method enabled not only starch, but also the hydrolysis of other oligosaccharides in the algal cell in high efficiency. Arrhenius-type of model equation enabled extrapolation of some yields of glucose beyond this range. The pretreated slurry was fermented by yeast, Saccharomyces cerevisiae S288C, resulting in an ethanol yield of 29.2% from algal biomass. This study suggests that the pretreated algal biomass is a suitable feedstock for ethanol production and can have a positive impact on large-scale applied systems.