• Title/Summary/Keyword: Arrhenius equations

Search Result 40, Processing Time 0.024 seconds

Control Oriented Storage and Reduction Modeling of the Lean NOx Trap Catalyst (제어를 위한 Lean NOx Trap의 흡장 및 환원 모델링)

  • Lee, Byoungsoo;Han, Manbae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.60-66
    • /
    • 2014
  • A control oriented model of the Lean $NO_x$ trap (LNT) was developed to determine the timing of $NO_x$ regeneration. The LNT model consists of $NO_x$ storage and reduction model. Once $NO_x$ is stored ($NO_x$ storage model), at the right timing $NO_x$ should be released and then reduced ($NO_x$ reduction model) with reductants on the catalyst active sites, called regeneration. The $NO_x$ storage model simulates the degree of stored $NO_x$ in the LNT. It is structured by an instantaneous $NO_x$ storage efficiency and the $NO_x$ storage capacity model. The $NO_x$ storge capacity model was modeled to have a Gaussian distribution with a function of exhaust gas temperature. $NO_x$ release and reduction reactions for the $NO_x$ reduction model were modeled as Arrhenius equations. The parameter identification was optimally performed by the data of the bench flow reactor test results at space velocity 50,000/hr, 80,000/hr, and temperature of $250-500^{\circ}C$. The LNT model state, storage fraction indicates the degree of stored $NO_x$ in the LNT and thus, the timing of the regeneration can be determined based on it. For practical purpose, this model will be verified more completely by engine test data which simulate the NEDC transient mode.

MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN Al MATRIX

  • Kim, Yeon Soo;Hofman, G.L.;Ryu, Ho Jin;Park, Jong Man;Robinson, A.B.;Wachs, D.M.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.827-838
    • /
    • 2013
  • Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL) growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to $200^{\circ}C$, and for Mo content in the range of 6 - 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

Electrical/Mechanical Diagnosis of Local Deterioration in 600V Shielded Twist Pair Cable in a Nuclear Power Plant (원전용 600V 차폐 꼬임쌍선 케이블의 국부열화에 대한 전기적/기계적 진단)

  • Park, Myeongkoo;Kim, Kwangho;Lim, Chanwoo;Kim, TaeYoon;Kim, Hyunsu;Chai, Jangbom;Kim, Byungsung;Nah, Wansoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.203-210
    • /
    • 2017
  • In this paper, we propose a electrical/mechanical method to effectively diagnose the local deterioration of a 10m long power shielded twist pair cable defined by the American Wire Gauge (AWG) 14 specification using electrical/mechanical methods. The rapid deterioration of the cable proceeded by using the heating furnace, which is based on the Arrhenius equations proceeds from 0 to 35 years with the deteriorated equivalent model. In this paper, we introduce a method to diagnose the characteristics of locally deteriorated cable by using $S_{21}$ phase and frequency change rate measured by vector network analyzer which is the electrical diagnostic method. The measured $S_{21}$ phase and rate of change of frequency show a constant correlation with the number of years of locally deteriorated cable, thus it can be useful for diagnosing deteriorated cables. The change of modulus due to deterioration was measured by a modulus measuring device, which is defined by the ratio of deformation from the force externally applied to the cable, and the rate of modulus change also shows a constant correlation with the number of years of locally deteriorated cable. Finally, By combining the advantages of electrical/mechanical diagnostic methods, we can efficiently diagnose the local deterioration in the power shielded cable.

Numerical Investigation on Initiation Process of Spherical Detonation by Direct Initiation with Various Ignition Energy

  • Nirasawa, Takayuki;Matsuo, Akiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.45-52
    • /
    • 2008
  • In order to investigate the initiation and propagation processes of a spherical detonation wave induced by direct initiation, numerical simulations were carried out using two-dimensional compressible Euler equations with an axisymmetric assumption and a one-step reaction model based on Arrhenius kinetics with various levels of ignition energy. By varying the amount of ignition energy, three typical initiation behaviors, which were subcritical, supercritical and critical regimes, were observed. Then, the ignition energy of more than $137.5{\times}10^6$ in non-dimensional value was required for initiating a spherical detonation wave, and the minimum ignition energy(i.e., critical energy) was less than that of the one-dimensional simulation reported by a previous numerical work. When the ignition energy was less than the critical energy, the blast wave generated from an ignition source continued to attenuate due to the separation of the blast wave and a reaction front. Therefore, detonation was not initiated in the subcrtical regime. When the ignition energy was more than the minimum initiation energy, the blast wave developed into a multiheaded detonation wave propagating spherically at CJ velocity, and then a cellular pattern radiated regularly out from the ignition center in the supercritical regime. The influence on ignition energy was observed in the cell width near the ignition center, but the cell width on the fully developed detonation remained constant during the expanding of detonation wave due to the consecutive formation of new triple points, regardless of ignition energy. When the ignition energy was equal to the critical energy, the decoupling of the blast wave and a reaction front appeared, as occurred in the subcrtical regime. After that, the detonation bubble induced by the local explosion behind the blast wave expanded and developed into the multiheaded detonation wave in the critical regime. Although few triple points were observed in the vicinity of the ignition core, the regularly located cellular pattern was generated after the onset of the multiheaded detonation. Then, the average cell width on the fully developed detonation was almost to that in the supercritical regime. These numerical results qualitatively agreed with previous experimental works regarding the initiation and propagation processes.

  • PDF

Numerical Investigation of Dual Mode Ramjet Combustor Using Quasi 1-Dimensional Solver (근사 1차원 솔버를 이용한 이중모드 램제트 연소실 해석)

  • Yang, Jaehoon;Nam, Jaehyun;Kang, Sanghun;Yoh, Jai-ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.909-917
    • /
    • 2021
  • In this work, a one-dimensional combustor solver was constructed for the scramjet control m odel. The governing equations for fluid flow, Arrhenius based combustion kinetics, and the inje ction model were implemented into the solver. In order to validate the solver, the zero-dimensi onal ignition delay problem and one-dimensional scramjet combustion problem were considered and showed that the solver successfully reproduced the results from the literature. Subsequentl y, a ramjet analysis algorithm under subsonic speed conditions was constructed, and a study o n the inlet Mach number of the combustor was carried out through the thermal choking locatio ns at ram conditions. In such conditions, a model for precombustion shock train analysis was i mplemented, and the algorithm for transition section analysis was introduced. In addition, in or der to determine the appropriateness of the ram mode analysis in the code, the occurrence of a n unstart was studied through the length of the pseudo-shock in the isolator. A performance a nalysis study was carried out according to the geometry of the combustor.

Behavior characteristics of hydrogen and its isotope in molten salt of LiF-NaF-KF (FLiNaK)

  • Zeng, Youshi;Liu, Wenguan;Liu, Wei;Qian, Yuan;Qian, Nan;Wu, Xiaoling;Huang, Yu;Wu, Shengwei;Wang, Guanghua
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.490-494
    • /
    • 2019
  • Experimental studies to investigate the behaviors of hydrogen in molten FLiNaK (LiF-NaF-KF) have been conducted at $500-700^{\circ}C$. On the basis of previous studies, the diffusivity and solubility of hydrogen in FLiNaK have been revised, and the expressions can be correlated to the following Arrhenius equations: $D_{H2}=1.62{\times}10^{-5}{\exp}(-48.20{\times}10^3/Rg{\cdot}T) m^2/s]$ and $S_{H2}=1.03{\times}10^{-4}{\exp}(-14.96{\times}10^3/Rg{\cdot}T) [mol-H_2/m^3/Pa]$, respectively. The behavior characteristics of deuterium in FLiNaK were studied and compared with the hydrogen behaviors in FLiNaK. The results showed the behaviors of deuterium were consistence with the behaviors of hydrogen in FLiNaK. The difference between hydrogen and deuterium has not been observed upon the experimental research of the behavior characteristics of hydrogen and deuterium in FLiNaK, which suggested the results obtained here might apply equally to the behavior characteristics of tritium in FLiNaK.

Kinetics of Drying Shiitake Mushroom, Lentinus edodes sanryun No. 1 (표고버섯의 열풍건조속도론(熱風乾燥速度論)에 관한 연구(硏究))

  • Cho, Duk-Bong;Kim, Dong-Pil;Choi, Choon-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.10 no.1
    • /
    • pp.53-60
    • /
    • 1981
  • Dehydration phenomena has been studied for the shiitake mushroom Lentinus edodes sanryun No.1, through which examine the effect of temperature and air velocity and derivation of its kinetics. Temperature effect for the dehydration rate constant were examined under the constant air velocity (1.5m/sec) with the variation of temperature from $40^{\circ}C$ to $55^{\circ}C$. Water content were reduced exponentially with the course of time and calculated dehydration rate constant values varies with temperature with an Arrhenius-type relationship, which had been expected in the chemical reaction kinetics. Influence of air velocity for the dehydration rate constant under the constant temperature $(45^{\circ}C)$ showed interesting results. For the range 1.0m/sec to 2.0m/sec, dehydration rate constant values are increased with the air velocity, but for the 2.0 to 3.1m/sec, dehydration rate constant values are decreased which were caused by case hardening. One of the selected conditions in the optimal dehydration range, temperature $50^{\circ}C$, air velocity 2m/see, and its measured humidity 38-41%, mathematical model of dehydration curve and dehydration rate equations were developed and the resulting kinetic models were X=6.94 $e^{-0.345t}$ and dx/dt = -2.39 $e^{-0.345t}$

  • PDF

Numerical Study of Evaporation and Ignition of in-line Array Liquid Droplets (액적 배열의 증발과 착화에 관한 수치해석적 연구)

  • 김충익;송기훈
    • Fire Science and Engineering
    • /
    • v.13 no.1
    • /
    • pp.37-47
    • /
    • 1999
  • The spreading fire of very small floating particles after they are ignited is fast and t therefore dangerous. The research on this area has been limited to experiments and global simulations which treat them as dusts or gaseous fuel with certain concentration well m mixed with air. This research attempted micro-scale analysis of ignition of those particles modeling them as liquid droplets. For the beginning, the in-line array of fuel droplets is modeled by two-dimensional, unsteady conservation equations for mass, momentum, energy and species transport in the gas phase and an unsteady energy equation in the liquid phase. They are solved numerically in a generalized non-orthogonal coordinate. The single step chemical reaction with reaction rate controlled by Arrhenius’ law is assumed to a assess chemical reaction numerically. The calculated results show the variation of temperature and the concentration profile with time during evaporation and ignition process. Surrounding oxygen starts to mix with evaporating fuel vapor from the droplet. When the ignition condition is met, the exothermic reactions of the premixed gas initiate a and burn intensely. The maximum temperature position gradually approaches the droplet surface and maximum temperature increases rapidly following the ignition. The fuel and oxygen concentration distributions have minimum points near the peak temperature position. Therefore the moment of ignition seems to have a premixed-flame aspect. After this very short transient period minimum points are observed in the oxygen and fuel d distributions and the diffusion flame is established. The distance between droplets is an important parameter. Starting from far-away apart, when the distance between droplets decreases, the ignition-delay time decreases meaning faster ignition. When they are close and after the ignition, the maximum temperature moves away from the center line of the in-line array. It means that the oxygen at the center line is consumed rapidly and further supply is blocked by the flame. The study helped the understanding of the ignition of d droplet array and opened the possibility of further research.

  • PDF

Interactions between Hydrodenitrogenation of Pyridine and Hydrodeoxygenation of m-Cresol over sulfided CoMo/γ-Al2O3 Catalyst (황화 CoMo/γ-Al2O3 촉매상에서 수첨탈질반응과 수첨탈산소 반응의 상호작용)

  • Kim, Hak-Soo;Park, Hea-Kyung;Kim, Kyung-Lim
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.108-118
    • /
    • 1991
  • Interactions between pyridine hydrodenitrogenation (HDN) and m-cresol hydrodeoxygenation(HDO), and the kinetic analysis were studied over sulfided $CoMo/{\gamma}-Al_2O_3$ catalyst at the range of temperatures between 473 K and 723 K, the total pressures between $10{\times}10^5Pa$ and $50{\times}10^5Pa$, and the contact times between 0.0125 g-cat. hr/ml-feed and 0.03g-cat. hr/ml-feed. HDN of pyridine and HDO of m-cresol were inhibited by each other and the inhibition effect of HDO by pyridine is higher than that of HDN by m-cresol. But reactivity of m-cresol is higher than that of pyridine. The rate equations of pyridine and m-cresol were given to be ${\gamma}_{HDN}=k_{HDN}{\cdot}K_pC_p/(1+K_cC_c+K_pC_p)$ and ${\gamma}_{HDO}=k_{HDO}{\cdot}K_cC_c/(1+K_cC_c+K_pC_p)$ in terms of Langmuir-Hinshellwood-Hougen-Watson model. At each temperature, reaction rate constants and adsorption equilibrium constants were determined and activation energies of pyridine HDN and m-cresol HDO are 13.83kcal/mol, respectively and the heat of adsorption are -6.458 and -5.045kcal/mol, respectively.

  • PDF

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.