• Title/Summary/Keyword: Arrhenius activation

Search Result 345, Processing Time 0.028 seconds

The Study on Thermal Analysis and Thermodynamic Characteristics of Spinel Compounds(ZnCo2O4, NiCo2O4) (스피넬 구조를 가지는 전이금속화합물(ZnCo2O4, NiCo2O4)의 열적 분석 및 열역학적 특성 연구)

  • Kim, Jae-Uk;Ji, Myoung-Jin;Cha, Byung-Kwan;Kim, Chul-Hyun;Jang, Won-Cheoul;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.2
    • /
    • pp.192-197
    • /
    • 2010
  • The spinel compound was obtained by the thermal decomposition of Zn-Co and Zn-Ni gel prepared by sol-gel method using oxalic acid as a chelating agent. The formation of spinel compound has been comfirmed by thermogravimetric analysis (TGA), x-ray powder diffraction (XRD) and infrared spectroscopy (IR). The particle size of 13 nm~16 nm was calculated by Scherrer's equation. The sol-gel method provides a practicable and effective route for the synthesis of the spinel compound at low temperature ($350^{\circ}C$). The kinetic parameters such as activation energy (Ea) and pre-exponential factor (A) for each compound were found by means of the Kissinger method and Arrhenius equation. The decomposition of spinel compound has an activation energy about 155 kJ/mol. Finally, the thermodynamic parameters (${\Delta}G^{\varphi}$, ${\Delta}H^{\varphi}$, ${\Delta}S^{\varphi}$) for decomposition of spinel compound was determined.

THE EFFECT OF PROESSURE ON THE ELECTRICAL CONDUCTIVITY OF SEA WATER ( II ) -The Activation Energy and the Activation Volume Change- (해수의 전기전도도에 미치는 압력의 영향 ( II ) -활성화에너지와 활성화부피변화-)

  • HWANG Kum-Sho;HWANG Jung-Ui
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.4
    • /
    • pp.213-220
    • /
    • 1977
  • In this study, physical and chemical properties of sea water were investigated qualitatively from the data measured by means of the conductive method as described in the previous paper. The activation energy, ${\Delta}E$, calculated from the suggested equation describing the electrical conductive property of sea water was about 3.0 to 4.0 Kcal/mole at a given pressure and concentration. The average values of the activation volume change, ${\Delta}V$, over the pressure 1 to 1,200 bars decreased from -1.30 to $-0.27\;cm^3/mole$ as the temperature increased from 10 to $25^{\circ}C$.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Computational Study on Unsteady Mechanism of Spinning Detonations

  • Matsuo, Akiko;Sugiyama, Yuta
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.367-373
    • /
    • 2008
  • Spinning detonations propagating in a circular tube were numerically investigated with a one-step irreversible reaction model governed by Arrhenius kinetics. Activation energy is used as parameter as 10, 20, 27 and 35, and the specific heat ratio and the heat release are fixed as 1.2 and 50. The time evolution of the simulation results was utilized to reveal the propagation mechanism of single-headed spinning detonation. The track angle of soot record on the tube wall was numerically reproduced with various levels of activation energy, and the simulated unique angle was the same as that of the previous reports. The maximum pressure histories of the shock front on the tube wall showed stable pitch at Ea=10, periodical unstable pitch at Ea=20 and 27 and unstable pitch consisting of stable, periodical unstable and weak modes at Ea=35, respectively. In the weak mode, there is no Mach leg on the shock front, where the pressure level is much lower than the other modes. The shock front shapes and the pressure profiles on the tube wall clarified the mechanisms of these stable and unstable modes. In the stable pitch at Ea=10, the maximum pressure history on the tube wall remained nearly constant, and the steady single Mach leg on the shock front rotated at a constant speed. The high and low frequency pressure oscillations appeared in the periodical unstable pitch at Ea=20 and 27 of the maximum pressure history. The high frequency was one cycle of a self-induced oscillation by generation and decay in complex Mach interaction due to the variation in intensity of the transverse wave behind the shock front. Eventually, sequential high frequency oscillations formed the low frequency behavior because the frequency behavior was not always the same for each cycle. In unstable pitch at Ea=35, there are stable, periodical unstable and weak modes in one cycle of the low frequency oscillation in the maximum pressure history, and the pressure amplitude of low frequency was much larger than the others. The pressure peak appeared after weak mode, and the stable, periodical unstable and weak modes were sequentially observed with pressure decay. A series of simulations of spinning detonations clarified that the unsteady mechanism behind the shock front depending on the activation energy.

  • PDF

Kinetic Analyses on Thermal Degradation of Epoxy Based Adhesive for Packaging Application (센서 패키지용 고분자 접착제의 열화 거동 분석)

  • Kim, Yeong K.;Lee, Yoon-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • An analysis of thermal degradation of epoxy based adhesive performed by thermogravimetry tests are presented in this study. Six different heating rates were employed for the weight change measurements. Based on the data, an Arrhenius type modeling equation was developed by calculating activation energies and proportional constants, and $n^{th}$ polynomial function was adopted to predict the weight change rates. The prediction results by the modeling was compared with the data using the average activation energy. It was found that the activation energy at the each heating rate was not same due to the different degradation kinetics, especially at the high heating rate. To overcome this pitfall, a new approach using exponential function series was introduced and employed. The calculation results showed very good agreements with the test data regardless of the heating rates.

Excess proton catalyzed H/D exchange reaction at the ice surface

  • Moon, Eui-Seong;Kang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.333-333
    • /
    • 2011
  • We studied the H/D exchange kinetics of pure and acid dopped water-ice film by using the techniques of reactive ions scattering (RIS) and low energy sputtering (LES) with low kinetic energy cesium ion beam (<35 eV). From RIS, neutral water isotopomers were detected in the form of cesium-molecule ion clusters, $CsX^+$ (X= $H_2O$, HDO, $D_2O$). Ionic species, like $H_3O^+$, $DH_2O^+$, $D_2HO^+$, $D_3O^+$, adsorbed on the surface were ejected via LES process. Those techniques allowed us to trace the isotopomeric populations of water-ice film. To show the catalytic effect of excess proton in the H/D exchange reaction, our study was conducted with two types of water-ice films. In film 1, about 0.5 BL of $H_2O$ was adsorbed on HCl (0.1 ML) dopped $D_2O$ (8 BL) film. In film 2, similar amount of $H_2O$ used in film 1 was adsorbed on pure $D_2O$ film. Kinetic data were obtained from each film type for 90-110 K (film 1) and 110-130 K (film 2) and fitted with numerically integrated lines. Through the Arrhenius plot of kinetic coefficient deduced from fitting of the H/D exchange reaction, the activation energy of film 1 and 2 were estimated to be $10{\pm}3kJmol^{-1}$ and $17{\pm}4kJmol^{-1}$. This activation barrier difference could be understood from detailed pictures of H/D exchange. In film 2, both the formation of ion pair, $H_3O^+$ and OH. and proton transfer were needed for the H/D exchange. However, in film 1, only proton transfer was necessary but ion pair formation was not, so this might reduce the activation energy.

  • PDF

Dynamic Rheological Properties of Honeys at Low Temperatures as Affected by Moisture Content and Temperature

  • Kang, Kyoung-Mo;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.90-94
    • /
    • 2008
  • Dynamic rheological properties of honey samples with 3 different moisture contents (17.2, 19.0, and 21.0%) were evaluated at various low temperatures (-15, -10, -5, and $0^{\circ}C$) using a controlled stress rheometer. The honey samples displayed a liquid-like behavior, with loss modulus (G") predominating over storage modulus (G') (G">>G'), showing the high dependence on frequency ($\omega$). The magnitudes of G' and G" decreased with an increase in temperature and water content while a predominant increase of G' was noticed at $-15^{\circ}C$. The time-temperature superposition (TTS) principle was applied to bring G" values for honeys at various temperatures together into a master curve. The G" over the temperature range of -15 to $0^{\circ}C$ obeyed the Arrhenius relationship with a high determination coefficient ($R^2=0.98-0.99$). Activation energy value (Ea=112.4 kJ/mol) of honey with a moisture content of 17.2% was higher than those (Ea=98.8-101.1 kJ/mol) of other honey samples with higher moisture contents.

Characteristics of PET Microfiber Fabrics Decomposed by Sodium glycerolate/Glycerol Solution (Sodium glycerolate/Glycerol 용액에 의한 PET 신합섬직물의 분해특성)

  • Yoon, Jong Ho;Huh, Man Woo;Bae, Jeong Sook;Cho, Yong Suk
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.16-24
    • /
    • 1996
  • Polyester microfiber fabrics were alcoholysed at 120, 140, and 16$0^{\circ}C$ in 0.5, 1.0, and 1.5% of sodiumglycerolate/glycerol solutions(NaGR) up to 80% and the characteristic decomposition features were compared and discussed with the results of the hydrolysis done by 5% sodium hydroxide solution(NaOH) at 80, 90, and 10$0^{\circ}C$. The resulting activation thermodynamic parameters calculated by the combined use of the Arrhenius equation and the Eyring equation were in NaOH case ${\Delta}H^*$=- 13.89 kcal/mol, ${\Delta}S^*$/=-38.12 cal/mol K, and ${\Delta}G^*$=25.25 kcal/mol and in NaGR case ${\Delta}H^*$=29.81 kcal/mol, ${\Delta}S^*$=-2.29 cal/mol K and ${\Delta}G^*$=30.49 kcal/mol. Since in all cases NaGR-PET system has higher activation thermodynamic parameters, it was concluded that NaGR-PET reaction system is more favorable at high temperatures and occurs in a less selective fashion, in comparison to the NaOH-PET reaction system.

  • PDF

Estimation of Effective Moisture Diffusivity of Rapeseed (Brassica napus L.) (유채 종자의 수본확산계수에 관한 연구)

  • Duc, Le Ahn;Hong, Sang-Jin;Han, Jae-Woong;Keum, Dong-Hyuk
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.296-302
    • /
    • 2008
  • The effective moisture diffusivity and its dependence on drying temperature during drying of rapeseed were experimentally investigated. The data were recorded from thin layer drying experiments at nine different combinations of drying air temperatures of 40, 50, and $60^{\circ}C$ and the relative humidities of 30, 45, and 60%. The moisture diffusion equation was analyzed using stepwise multiple regression analysis. Effective moisture diffusivities were calculated based on the moisture diffusion equation for a spherical shape using Fick's second law. The effective diffusivities during the drying of rapeseed were $l.72{\times}10^{-11}$, $2.41{\times}10^{-11}$ and $3.31{\times}10^{-11}\;m^2{\cdot}s^{-1}$ at 40, 50 and $60^{\circ}C$, respectively. The activation energy for moisture diffusion during drying was $28.47\;kJ{\cdot}mol^{-1}$. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation. Drying occurred in the falling rate period and the internal moisture diffusion phenomenon is the governing physical mechanism of the moisture movement in the particles.

AC susceptibility of the $high-T_c$ superconductor $SmBa_2Cu_2O_y$ (고온초전도체 $SmBa_2Cu_2O_y$ 교류자화율)

  • Kim H;Lee B. Y;Lee J. H;Kim Y. C
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2004
  • The policrystalline$SmBa_2$$Cu_2$$O_{y}$ was synthesized by the solid state reaction method. The dependence of AC susceptibility on temperature and applied ac field was studied. The critical temperature $T_{c}$ is about 92 K. As the ac field is increased, the slope and the value of real part of susceptibility become smaller and the peak position of imaginary part $T_{P}$ was shifted to a lower temperature with peak broadening. Using Bean's model, we determined intergrain critical current density $J_{c}$ and obtained $44 A/{cm}^2$ at 75 K. From the relation of the $J_{c}$ (T)=($1-T/T_{c}$ )$^{\beta}$ we obtained $\beta$=0.8 and found that the Josephson junction type of the $SmBa_2$$Cu_2$$O_{y}$ is SIS junction. The peak of the imaginary part shifts to higher temperature with increasing frequency, f. from Arrhenius plot, we obtained the activation energy of about 0.96 eV.

  • PDF