• Title/Summary/Keyword: Array impinging jet

Search Result 18, Processing Time 0.023 seconds

Study on the Characteristics of Heat Transfer with Array of Multiple Impinging Jet Nozzle (충돌제트 노즐의 다중 배열 형상에 따른 열전달 특성)

  • Kim, D.K.;Son, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.32-37
    • /
    • 2006
  • In this paper, we present the flow and heat transfer characteristics with the array of impinging jet nozzles by using the numerical computation and experiment. Numerical solutions were obtained for dimensionless gap H=6, dimensionless outlet length L=10 and Reynolds number Re=1500 by using the commercial CFD code, CFX-5. Experimental and numerical results were agreed well with each other. It was found that the impinging jet with circular array nozzles generated the uniform heat transfer area and the maximum heat transfer is higher than rectangular array nozzles for certain parameter sets. It is one of the most important utilities providing steam to turbine in order to supply mechanical energy in thermal power plant. It is composed of thousands of tubes for high efficient heat transfer.

  • PDF

Study on the Heat Transfer Enhancement with Array of Impinging Jet Nozzles (충돌제트 노즐의 배열방법에 따른 열전달 특성에 관한 연구)

  • Park, Jae-Hyun;Suh, Young-Kweon;Kim, Dong-Kyun;Kim, See-Pum
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1476-1481
    • /
    • 2004
  • In this paper, we present the flow and heat transfer characteristics with the array of impinging jet nozzles by using the numerical computation and experiment. Numerical solutions were obtained for dimensionless gap H=6, dimensionless outlet length L=10 and Reynolds number Re=1500 by using the commercial CFD code, CFX -5. Experimental and numerical results were agreed well with each other. It was found that the impinging jet with circular array nozzles generated the uniform heat transfer area and the maximum heat transfer is higher than rectangular array nozzles for certain parameter sets.

  • PDF

Heat Transfer Enhancement by Trapezoid Rod Array in Impinging Jet System (충돌제트계에서 사다리형 로드 배열에 의한 열전달촉진에 관한 연구)

  • Lim, Tae-Su;Kum, Sung-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.260-267
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of jet flow and heat transfer caused by trapezoid rods array in impinging jet system. In this study, trapezoid rods have been set up in front of flat plate to serve as a turbulence promoter. The bottom width of trapezoid rod was W=4, 8mm and oblique angle were $80^{\circ}$. The space from rods to the heating surface was C=1, 2, 4mm, the pitch between each rods was P=30, 40, 50mm, and the distance from nozzle exit to flat plate was H=100, 500mm. This results were compared with the case without trapezoid rods. As a result, when rods are installed in front of the impinging plate, the acceleration of the jet flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Among test conditions, the heat transfer performance was best for the condition of W=8mm, C=1mm, P=30mm and H/B=10. The maximum heat transfer rate is about 1.9 times larger than that without trapezoid rods.

  • PDF

Heat Transfer and Flow Characteristics by Trapezoid Rod Array in Impinging Jet System (충돌제트계에서 사다리형 로드 배열에 의한 열전달 및 유동특성)

  • 금성민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.904-913
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of jet flow and heat transfer caused by trapezoid rods array in impinging jet system. In this study, trapezoid rods have been set up in front of flat plate to serve as a turbulence promoter. The bottom width of trapezoid rod was W=4, 8 mm and oblique angle were 80$^{\circ}$. The space from rods to the heating surface was C=1, 2, 4 mm, the pitch between each rods was P=30, 40, 50 mm, and the distance from nozzle exit to flat plate was H=100, 500 mm. This results were compared with the case without trapezoid rods. As a result, when rods are installed in front of the impinging plate, the acceleration of the jet flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Among test conditions, the heat transfer performance was best for the condition of W=8 mm, C=1 mm, P=30 mm and H/B=10. The maximum heat transfer rate is about 1.9 times larger than that without trapezoid rods.

  • PDF

Heat Transfer of Array Impinging Jet on Concave Surfaces with Rectangular Fin (사각 핀이 설치된 오목충돌면에서 배열충돌제트의 국소 열전달 특성 고찰)

  • Oh, Sang-Hyun;Lee, Won-Hee;Lee, Dong-Hyun;Cho, Hyung-Hee;Kim, Mun-Young;Lee, Sung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1149-1154
    • /
    • 2008
  • The present study investigates the heat transfer characteristics on concave surface with array impinging jet and fin arrangement. The heat transfer coefficients was measured by TLC method. The Reynolds number based on jet hole diameter is 10,000 and hole diameter-to-plate distance ratio (H/d) is fixed at 2. The rectangular fins are installed in the curved channel and the width of fin varies from 1d to 3d. Without fins, the averaged heat transfer coefficients decreases as moves downstream region. While, the rectangular fins block the crossflow and higher heat transfer rates were observed compared to smooth channel.

  • PDF

Heat Transfer Characteristics by the Right Angled Triangle Rod Array in Impinging Air Jet System (충돌공기제트시스템에서 직삼각형로드에 의한 열전달특성)

  • Kum, Sung-Min
    • Journal of ILASS-Korea
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2008
  • This experimental study was carried out to examine the heat transfer characteristics of impinging air jet on a flat plate with a set of right angled triangle rods. Each right angled triangle rod in the array was positioned normal to the flow direction and parallel to the flat plate surface. The clearances from a right angled triangle rod to flat plate surface (C=1, 2 and 4 mm) and the distance from nozzle exit to flat plate (H=100 and 500 mm) were changed for the pitch between each right angled triangle rods (P=40 mm). As a result, heat transfer shows best performance at the clearance of C=1 mm, in case clearance changed, and the average heat transfer enhancement rate increased up to 47% compared to the result of a flat plate without a right angled triangle rod.

  • PDF

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure (충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.83-93
    • /
    • 2017
  • A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

A Study on the Heat Transfer Enhancement by Trapezoid Rod in Impinging Jet System (충돌분류계에서 사다리형 로드를 이용한 열전달증진에 관한 연구)

  • Lim, T.S.;Kum, S.M.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.565-571
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of air flow and heat transfer caused by trapezoid rods array in impinging air jet system. In this study, trapezoid rods have been set up on front of flat plate to act as a turbulence promoter. Local Nusselt numbers were determined as a function of three parameters: (a) the space from rods to heating surface(C=1, 2, 4mm), (b) the pitch between each rods(P=30, 40, 50mm), (c) the distance from nozzle exit to flat plate(H/B=2, 6, 10). And this research compared the above with the experiment without trapezoid rods. As a result, heat transfer performance was best under the condition of C=1mm and as the pitch is 30mm. In this case, maximum rate of heat transfer augmentation is about 1.9 times greater compared to that without trapezoid rods.

  • PDF

A Study on the Heat Transfer Enhancement by Trapezoid Rod Arrays in 2-Dimensional Impinging Jet System (2차원 충돌 분류계에서 사다리형 로드 배열에 의한 열전달 촉진 효과)

  • Lim, Tae-Soo;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1659-1666
    • /
    • 2001
  • The objective of this study was to investigate the characteristics of air flow and heat transfer caused by trapezoid rods array in impinging air jet system. Trapezoid rods have been set up on front of flat plate to act as a turbulence promoter. Local Nusselt numbers were determined as a function of three parameters : (a) the space from re(Is to heating surface(C=1, 2, 4mm), (b) the pitch between each rods(P=30, 40, 50mm), (c) the distance from nozzle exit to flat plate(H/B=2, 6, 10). The measurements were compared with those of the experiment without trapezoid rods. As a result, when rods are installed in front of the impinging palate, the acceleration of the flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Heat transfer performance was best under the condition of C=1mm and as the pitch is 30mm. The maximum rate of heat transfer augmentation is about 1.9 times greater compared to that without trapezoid rods.

Numerical Analysis of Micro-jet Array Cooling Device with Various Configurations

  • Jung, Yang-Ki;Lee, In-Chan;Ma, Tae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • Numerical and visualization procedures are used in a finite difference grid to analyze and better understand the heat transfer in the MEMS based air micro-jet array (MIA) impingement cooling device. The Navier-Stokes (NS) equations with incompressible flow are solved using an implicit procedure. The temperature contour and velocity vector visualization diagrams are used for illustration. The computed temperature distribution at the bottom of the MIA is in good agreement with the experimental measurement data. The parameters are investigated to improve the efficiency of heat transfer in the MIA. The optimum configuration of the MIA is suggested. The present modeling explains the flow phenomenon and yields valuable information to understand the flow and heat transfer in MIA.